File size: 7,532 Bytes
05d640e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import math
import numpy as np
import torch
import pyvips

from typing import TypedDict


def select_tiling(
    height: int, width: int, crop_size: int, max_crops: int
) -> tuple[int, int]:
    """
    Determine the optimal number of tiles to cover an image with overlapping crops.
    """
    if height <= crop_size or width <= crop_size:
        return (1, 1)

    # Minimum required tiles in each dimension
    min_h = math.ceil(height / crop_size)
    min_w = math.ceil(width / crop_size)

    # If minimum required tiles exceed max_crops, return proportional distribution
    if min_h * min_w > max_crops:
        ratio = math.sqrt(max_crops / (min_h * min_w))
        return (max(1, math.floor(min_h * ratio)), max(1, math.floor(min_w * ratio)))

    # Perfect aspect-ratio tiles that satisfy max_crops
    h_tiles = math.floor(math.sqrt(max_crops * height / width))
    w_tiles = math.floor(math.sqrt(max_crops * width / height))

    # Ensure we meet minimum tile requirements
    h_tiles = max(h_tiles, min_h)
    w_tiles = max(w_tiles, min_w)

    # If we exceeded max_crops, scale down the larger dimension
    if h_tiles * w_tiles > max_crops:
        if w_tiles > h_tiles:
            w_tiles = math.floor(max_crops / h_tiles)
        else:
            h_tiles = math.floor(max_crops / w_tiles)

    return (max(1, h_tiles), max(1, w_tiles))


class OverlapCropOutput(TypedDict):
    crops: np.ndarray
    tiling: tuple[int, int]


def overlap_crop_image(
    image: np.ndarray,
    overlap_margin: int,
    max_crops: int,
    base_size: tuple[int, int] = (378, 378),
    patch_size: int = 14,
) -> OverlapCropOutput:
    """
    Process an image using an overlap-and-resize cropping strategy with margin handling.

    This function takes an input image and creates multiple overlapping crops with
    consistent margins. It produces:
    1. A single global crop resized to base_size
    2. Multiple overlapping local crops that maintain high resolution details
    3. A patch ordering matrix that tracks correspondence between crops

    The overlap strategy ensures:
    - Smooth transitions between adjacent crops
    - No loss of information at crop boundaries
    - Proper handling of features that cross crop boundaries
    - Consistent patch indexing across the full image

    Args:
        image (np.ndarray): Input image as numpy array with shape (H,W,C)
        base_size (tuple[int,int]): Target size for crops, default (378,378)
        patch_size (int): Size of patches in pixels, default 14
        overlap_margin (int): Margin size in patch units, default 4
        max_crops (int): Maximum number of crops allowed, default 12

    Returns:
        OverlapCropOutput: Dictionary containing:
            - crops: A numpy array containing the global crop of the full image (index 0)
                followed by the overlapping cropped regions (indices 1+)
            - tiling: Tuple of (height,width) tile counts
    """
    original_h, original_w = image.shape[:2]

    # Convert margin from patch units to pixels
    margin_pixels = patch_size * overlap_margin
    total_margin_pixels = margin_pixels * 2  # Both sides

    # Calculate crop parameters
    crop_patches = base_size[0] // patch_size  # patches per crop dimension
    crop_window_patches = crop_patches - (2 * overlap_margin)  # usable patches
    crop_window_size = crop_window_patches * patch_size  # usable size in pixels

    # Determine tiling
    tiling = select_tiling(
        original_h - total_margin_pixels,
        original_w - total_margin_pixels,
        crop_window_size,
        max_crops,
    )

    # Pre-allocate crops.
    n_crops = tiling[0] * tiling[1] + 1  # 1 = global crop
    crops = np.zeros(
        (n_crops, base_size[0], base_size[1], image.shape[2]), dtype=np.uint8
    )

    # Resize image to fit tiling
    target_size = (
        tiling[0] * crop_window_size + total_margin_pixels,
        tiling[1] * crop_window_size + total_margin_pixels,
    )

    # Convert to vips for resizing
    vips_image = pyvips.Image.new_from_array(image)
    scale_x = target_size[1] / image.shape[1]
    scale_y = target_size[0] / image.shape[0]
    resized = vips_image.resize(scale_x, vscale=scale_y)
    image = resized.numpy()

    # Create global crop
    scale_x = base_size[1] / vips_image.width
    scale_y = base_size[0] / vips_image.height
    global_vips = vips_image.resize(scale_x, vscale=scale_y)
    crops[0] = global_vips.numpy()

    for i in range(tiling[0]):
        for j in range(tiling[1]):
            # Calculate crop coordinates
            y0 = i * crop_window_size
            x0 = j * crop_window_size

            # Extract crop with padding if needed
            y_end = min(y0 + base_size[0], image.shape[0])
            x_end = min(x0 + base_size[1], image.shape[1])

            crop_region = image[y0:y_end, x0:x_end]
            crops[
                1 + i * tiling[1] + j, : crop_region.shape[0], : crop_region.shape[1]
            ] = crop_region

    return {"crops": crops, "tiling": tiling}


def reconstruct_from_crops(
    crops: torch.Tensor,
    tiling: tuple[int, int],
    overlap_margin: int,
    patch_size: int = 14,
) -> torch.Tensor:
    """
    Reconstruct the original image from overlapping crops into a single seamless image.

    Takes a list of overlapping image crops along with their positional metadata and
    reconstructs them into a single coherent image by carefully stitching together
    non-overlapping regions. Handles both numpy arrays and PyTorch tensors.

    Args:
        crops: List of image crops as numpy arrays or PyTorch tensors with shape
            (H,W,C)
        tiling: Tuple of (height,width) indicating crop grid layout
        patch_size: Size in pixels of each patch, default 14
        overlap_margin: Number of overlapping patches on each edge, default 4

    Returns:
        Reconstructed image as numpy array or PyTorch tensor matching input type,
        with shape (H,W,C) where H,W are the original image dimensions
    """
    tiling_h, tiling_w = tiling
    crop_height, crop_width = crops[0].shape[:2]
    margin_pixels = overlap_margin * patch_size

    # Calculate output size (only adding margins once)
    output_h = (crop_height - 2 * margin_pixels) * tiling_h + 2 * margin_pixels
    output_w = (crop_width - 2 * margin_pixels) * tiling_w + 2 * margin_pixels

    reconstructed = torch.zeros(
        (output_h, output_w, crops[0].shape[2]),
        device=crops[0].device,
        dtype=crops[0].dtype,
    )

    for i, crop in enumerate(crops):
        tile_y = i // tiling_w
        tile_x = i % tiling_w

        # For each tile, determine which part to keep
        # Keep left margin only for first column
        x_start = 0 if tile_x == 0 else margin_pixels
        # Keep right margin only for last column
        x_end = crop_width if tile_x == tiling_w - 1 else crop_width - margin_pixels
        # Keep top margin only for first row
        y_start = 0 if tile_y == 0 else margin_pixels
        # Keep bottom margin only for last row
        y_end = crop_height if tile_y == tiling_h - 1 else crop_height - margin_pixels

        # Calculate where this piece belongs in the output
        out_x = tile_x * (crop_width - 2 * margin_pixels)
        out_y = tile_y * (crop_height - 2 * margin_pixels)

        # Place the piece
        reconstructed[
            out_y + y_start : out_y + y_end, out_x + x_start : out_x + x_end
        ] = crop[y_start:y_end, x_start:x_end]

    return reconstructed