moondream2 / moondream.py
vikhyatk's picture
Upload HfMoondream
05d640e verified
import torch
import torch.nn as nn
import random
from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional
from PIL import Image
from dataclasses import dataclass
from tokenizers import Tokenizer
from .config import MoondreamConfig
from .image_crops import reconstruct_from_crops
from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model
from .text import build_text_model, prefill, text_encoder, lm_head, decode_one_token
from .region import decode_coordinate, encode_coordinate, decode_size, encode_size
from .utils import remove_outlier_points
SamplingSettings = TypedDict(
"SamplingSettings",
{"max_tokens": int},
total=False,
)
DEFAULT_MAX_TOKENS = 512
@dataclass(frozen=True)
class EncodedImage:
pos: int
kv_cache: torch.Tensor
def _min_p_sampler(
logits: torch.Tensor,
min_p: float = 0.1,
filter_value: float = 0,
min_tokens_to_keep: int = 1,
temp=0.5,
) -> torch.Tensor:
"""
Min-p sampler adapted from https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
https://arxiv.org/pdf/2407.01082
"""
logits = logits / temp
probs = torch.softmax(logits, dim=-1)
top_probs, _ = probs.max(dim=-1, keepdim=True)
scaled_min_p = min_p * top_probs
tokens_to_remove = probs < scaled_min_p
sorted_indices = torch.argsort(logits, descending=True, dim=-1)
sorted_indices_to_remove = torch.gather(
tokens_to_remove, dim=-1, index=sorted_indices
)
if min_tokens_to_keep > 1:
sorted_indices_to_remove[..., :min_tokens_to_keep] = False
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, filter_value)
token = torch.multinomial(logits, num_samples=1)
return token.squeeze(0)
class MoondreamModel(nn.Module):
def __init__(self, config: MoondreamConfig, dtype=torch.float16):
super().__init__()
self.config = config
self.tokenizer = Tokenizer.from_pretrained(
"vikhyatk/moondream2", revision="2024-08-26"
)
self.vision = build_vision_model(config.vision, dtype)
self.text = build_text_model(config.text, dtype)
# Region Model
self.region = nn.ModuleDict(
{
"coord_encoder": nn.Linear(
config.region.coord_feat_dim, config.region.dim, dtype=dtype
),
"coord_decoder": nn.ModuleDict(
{
"fc1": nn.Linear(
config.region.dim, config.region.inner_dim, dtype=dtype
),
"fc2": nn.Linear(
config.region.inner_dim,
config.region.coord_out_dim,
dtype=dtype,
),
}
),
"size_encoder": nn.Linear(
config.region.size_feat_dim, config.region.dim, dtype=dtype
),
"size_decoder": nn.ModuleDict(
{
"fc1": nn.Linear(
config.region.dim, config.region.inner_dim, dtype=dtype
),
"fc2": nn.Linear(
config.region.inner_dim,
config.region.size_out_dim,
dtype=dtype,
),
}
),
}
)
self.region.coord_features = nn.Parameter(
torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T
)
self.region.size_features = nn.Parameter(
torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T
)
self.ops = {
"vision_encoder": vision_encoder,
"vision_projection": vision_projection,
"prefill": prefill,
"decode_one_token": decode_one_token,
}
@property
def device(self):
return self.vision.pos_emb.device
def compile(self):
self.ops["vision_encoder"] = torch.compile(
self.ops["vision_encoder"], fullgraph=True
)
# Need to figure out how to mark the 'reconstructed' input shape as dynamic
# self.ops["vision_projection"] = torch.compile(
# self.ops["vision_projection"], fullgraph=True
# )
self.ops["prefill"] = torch.compile(self.ops["prefill"], fullgraph=True)
self.ops["decode_one_token"] = torch.compile(
self.ops["decode_one_token"], fullgraph=True
)
def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor:
all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device)
torch._dynamo.mark_dynamic(all_crops, 0)
outputs = self.ops["vision_encoder"](all_crops, self.vision, self.config.vision)
global_features = outputs[0]
local_features = outputs[1:].view(
-1,
self.config.vision.enc_n_layers,
self.config.vision.enc_n_layers,
self.config.vision.enc_dim,
)
reconstructed = reconstruct_from_crops(
local_features,
tiling,
patch_size=1,
overlap_margin=self.config.vision.overlap_margin,
)
return self.ops["vision_projection"](
global_features, reconstructed, self.vision, self.config.vision
)
def encode_image(self, image: Union[Image.Image, EncodedImage]) -> EncodedImage:
if isinstance(image, EncodedImage):
return image
elif not isinstance(image, Image.Image):
raise ValueError("image must be a PIL Image or EncodedImage")
# Run through text model in addition to the vision encoder, to minimize
# re-computation if multiple queries are performed on this image.
kv_cache = torch.zeros(
self.config.text.n_layers,
2, # k, v
1, # batch size
self.config.text.n_heads,
self.config.text.max_context, # static cache
self.config.text.dim // self.config.text.n_heads, # head dim
device=self.device,
dtype=torch.float16,
)
with torch.no_grad():
img_emb = self._run_vision_encoder(image)
bos_emb = text_encoder(
torch.tensor([[self.config.tokenizer.bos_id]], device=self.device),
self.text,
)
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1)
self.ops["prefill"](inputs_embeds, kv_cache, 0, self.text, self.config.text)
return EncodedImage(pos=inputs_embeds.size(1), kv_cache=kv_cache)
def _prefill_prompt(
self, kv_cache: torch.Tensor, prompt_tokens: torch.Tensor, pos: int
):
with torch.no_grad():
prompt_emb = text_encoder(prompt_tokens, self.text)
hidden = self.ops["prefill"](
prompt_emb, kv_cache, pos, self.text, self.config.text
)
logits = lm_head(hidden, self.text)
next_token = torch.argmax(logits, dim=-1)
pos = pos + prompt_emb.size(1)
return logits, hidden, next_token, pos
def _generate_text(
self,
prompt_tokens: torch.Tensor,
kv_cache: torch.Tensor,
pos: int,
max_tokens: int,
):
kv_cache = kv_cache.clone()
_, _, next_token, pos = self._prefill_prompt(kv_cache, prompt_tokens, pos)
def generator(next_token, pos):
generated_tokens = 0
while (
next_token_id := next_token.item()
) != self.config.tokenizer.eos_id and generated_tokens < max_tokens:
yield self.tokenizer.decode([next_token_id])
with torch.no_grad():
next_emb = text_encoder(next_token, self.text)
logits, _, kv_cache_update = self.ops["decode_one_token"](
next_emb, kv_cache, pos, self.text, self.config.text
)
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
kv_cache_update
)
pos += 1
next_token = torch.argmax(logits, dim=-1)
generated_tokens += 1
return generator(next_token, pos)
def query(
self,
image: Union[Image.Image, EncodedImage],
question: str,
stream: bool = False,
settings: Optional[SamplingSettings] = None,
):
if self.config.tokenizer.templates["query"] is None:
raise NotImplementedError("Model does not support querying.")
image = self.encode_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["query"]["prefix"]
+ self.tokenizer.encode(question).ids
+ self.config.tokenizer.templates["query"]["suffix"]
],
device=self.device,
)
max_tokens = DEFAULT_MAX_TOKENS
if settings:
max_tokens = settings.get("max_tokens", DEFAULT_MAX_TOKENS)
def generator():
for token in self._generate_text(
prompt_tokens, image.kv_cache, image.pos, max_tokens
):
yield token
if stream:
return {"answer": generator()}
else:
return {"answer": "".join(list(generator()))}
def caption(
self,
image: Union[Image.Image, EncodedImage],
length: Literal["normal", "short"] = "normal",
stream: bool = False,
settings: Optional[SamplingSettings] = None,
):
if self.config.tokenizer.templates["caption"] is None:
raise NotImplementedError("Model does not support captioning.")
if length not in self.config.tokenizer.templates["caption"]:
raise ValueError(f"Model does not support caption length '{length}'.")
image = self.encode_image(image)
prompt_tokens = torch.tensor(
[self.config.tokenizer.templates["caption"][length]], device=self.device
)
max_tokens = DEFAULT_MAX_TOKENS
if settings:
max_tokens = settings.get("max_tokens", DEFAULT_MAX_TOKENS)
def generator():
for token in self._generate_text(
prompt_tokens, image.kv_cache, image.pos, max_tokens
):
yield token
if stream:
return {"caption": generator()}
else:
return {"caption": "".join(list(generator()))}
def _generate_points(
self,
hidden: torch.Tensor,
kv_cache: torch.Tensor,
next_token: torch.Tensor,
pos: int,
include_size: bool = True,
max_points: int = 50,
):
out = []
with torch.no_grad():
while (
next_token.item() != self.config.tokenizer.eos_id
and len(out) < max_points
):
x_logits = decode_coordinate(hidden, self.region)
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1)
next_emb = encode_coordinate(
x_center.to(dtype=x_logits.dtype), self.region
)
# Decode y-coordinate
_, hidden, kv_cache_update = self.ops["decode_one_token"](
next_emb, kv_cache, pos, self.text, self.config.text
)
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
kv_cache_update
)
pos += 1
y_logits = decode_coordinate(hidden, self.region)
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1)
next_emb = encode_coordinate(
y_center.to(dtype=y_logits.dtype), self.region
)
# Decode size
if include_size:
logits, hidden, kv_cache_update = self.ops["decode_one_token"](
next_emb, kv_cache, pos, self.text, self.config.text
)
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
kv_cache_update
)
pos += 1
size_logits = decode_size(hidden, self.region)
w = torch.argmax(size_logits[0], dim=-1) / size_logits.size(-1)
h = torch.argmax(size_logits[1], dim=-1) / size_logits.size(-1)
next_emb = encode_size(
torch.tensor(
[w, h], device=self.device, dtype=size_logits.dtype
),
self.region,
)[None]
# Add object
out.append(
{
"x_min": x_center.item() - w.item() / 2,
"y_min": y_center.item() - h.item() / 2,
"x_max": x_center.item() + w.item() / 2,
"y_max": y_center.item() + h.item() / 2,
}
)
else:
out.append({"x": x_center.item(), "y": y_center.item()})
# Decode next token (x-coordinate, or eos)
logits, hidden, kv_cache_update = self.ops["decode_one_token"](
next_emb, kv_cache, pos, self.text, self.config.text
)
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
kv_cache_update
)
pos += 1
next_token = torch.argmax(logits, dim=-1)
return out
def detect(
self,
image: Union[Image.Image, EncodedImage],
object: str,
settings: Optional[SamplingSettings] = None,
):
if self.config.tokenizer.templates["detect"] is None:
raise NotImplementedError("Model does not support object detection.")
image = self.encode_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["detect"]["prefix"]
+ self.tokenizer.encode(object).ids
+ self.config.tokenizer.templates["detect"]["suffix"]
],
device=self.device,
)
kv_cache = image.kv_cache.clone()
_, hidden, next_token, pos = self._prefill_prompt(
kv_cache, prompt_tokens, image.pos
)
hidden = hidden[:, -1:, :]
objects = self._generate_points(
hidden, kv_cache, next_token, pos, include_size=True, max_points=50
)
return {"objects": objects}
def point(
self,
image: Union[Image.Image, EncodedImage],
object: str,
settings: Optional[SamplingSettings] = None,
):
if self.config.tokenizer.templates["point"] is None:
raise NotImplementedError("Model does not support pointing.")
image = self.encode_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["point"]["prefix"]
+ self.tokenizer.encode(object).ids
+ self.config.tokenizer.templates["point"]["suffix"]
],
device=self.device,
)
kv_cache = image.kv_cache.clone()
_, hidden, next_token, pos = self._prefill_prompt(
kv_cache, prompt_tokens, image.pos
)
hidden = hidden[:, -1:, :]
objects = self._generate_points(
hidden, kv_cache, next_token, pos, include_size=False, max_points=50
)
return {"points": objects}
def _detect_gaze(
self,
image: EncodedImage,
source: Tuple[float, float],
force_detect: bool = False,
):
with torch.no_grad():
before_emb = text_encoder(
torch.tensor(
[self.tokenizer.encode("\n\nPoint:").ids], device=self.device
),
self.text,
)
after_emb = text_encoder(
torch.tensor(
[self.tokenizer.encode(" gaze\n\n").ids], device=self.device
),
self.text,
)
x_emb = encode_coordinate(
torch.tensor([[[source[0]]]], device=self.device, dtype=torch.float16),
self.region,
)
y_emb = encode_coordinate(
torch.tensor([[[source[1]]]], device=self.device, dtype=torch.float16),
self.region,
)
prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1)
kv_cache = image.kv_cache.clone()
hidden = self.ops["prefill"](
prompt_emb, kv_cache, image.pos, self.text, self.config.text
)
logits = lm_head(hidden, self.text)
next_token = torch.argmax(logits, dim=-1)
pos = image.pos + prompt_emb.size(1)
hidden = hidden[:, -1:, :]
if force_detect:
next_token = torch.tensor([[0]], device=self.device)
if next_token.item() == self.config.tokenizer.eos_id:
return None
gaze = self._generate_points(
hidden, kv_cache, next_token, pos, include_size=False, max_points=1
)
return gaze[0]
def detect_gaze(
self,
image: Union[Image.Image, EncodedImage],
eye: Optional[Tuple[float, float]] = None,
face: Optional[Dict[str, float]] = None,
unstable_settings: Dict[str, Any] = {},
):
if "force_detect" in unstable_settings:
force_detect = unstable_settings["force_detect"]
else:
force_detect = False
if "prioritize_accuracy" in unstable_settings:
prioritize_accuracy = unstable_settings["prioritize_accuracy"]
else:
prioritize_accuracy = False
if not prioritize_accuracy:
if eye is None:
raise ValueError("eye must be provided when prioritize_accuracy=False")
image = self.encode_image(image)
return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)}
else:
if (
not isinstance(image, Image.Image)
and "flip_enc_img" not in unstable_settings
):
raise ValueError(
"image must be a PIL Image when prioritize_accuracy=True, "
"or flip_enc_img must be provided"
)
if face is None:
raise ValueError("face must be provided when prioritize_accuracy=True")
encoded_image = self.encode_image(image)
if (
isinstance(image, Image.Image)
and "flip_enc_img" not in unstable_settings
):
flipped_pil = image.copy()
flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT)
encoded_flipped_image = self.encode_image(flipped_pil)
else:
encoded_flipped_image = unstable_settings["flip_enc_img"]
N = 10
detections = [
self._detect_gaze(
encoded_image,
(
random.uniform(face["x_min"], face["x_max"]),
random.uniform(face["y_min"], face["y_max"]),
),
force_detect=force_detect,
)
for _ in range(N)
]
detections = [
(gaze["x"], gaze["y"]) for gaze in detections if gaze is not None
]
flipped_detections = [
self._detect_gaze(
encoded_flipped_image,
(
1 - random.uniform(face["x_min"], face["x_max"]),
random.uniform(face["y_min"], face["y_max"]),
),
force_detect=force_detect,
)
for _ in range(N)
]
detections.extend(
[
(1 - gaze["x"], gaze["y"])
for gaze in flipped_detections
if gaze is not None
]
)
if len(detections) < N:
return {"gaze": None}
detections = remove_outlier_points(detections)
mean_gaze = (
sum(gaze[0] for gaze in detections) / len(detections),
sum(gaze[1] for gaze in detections) / len(detections),
)
return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}}