moondream2 / rope.py
vikhyatk's picture
Upload HfMoondream
05d640e verified
# Ethically sourced from https://github.com/xjdr-alt/entropix
import torch
def precompute_freqs_cis(
dim: int,
end: int,
theta: float = 10000.0,
use_scaled: bool = False,
dtype: torch.dtype = torch.float32,
) -> torch.Tensor:
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=dtype)[: (dim // 2)] / dim))
t = torch.arange(end, dtype=dtype).unsqueeze(1)
freqs = t * freqs.unsqueeze(0)
freqs = torch.exp(1j * freqs)
return torch.stack([freqs.real, freqs.imag], dim=-1)
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: torch.Tensor,
position_ids: torch.Tensor,
num_heads: int,
rot_dim: int = 32,
interleave: bool = False,
) -> torch.Tensor:
assert rot_dim == freqs_cis.shape[-2] * 2
assert num_heads == x.shape[1]
x_rot, x_pass = x[..., :rot_dim], x[..., rot_dim:]
if interleave:
xq_r = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 0]
xq_i = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 1]
else:
d_q = x_rot.shape[-1] // 2
xq_r, xq_i = x_rot[..., :d_q], x_rot[..., d_q:]
freqs_cos = freqs_cis[..., 0][position_ids, :].unsqueeze(0).unsqueeze(0)
freqs_sin = freqs_cis[..., 1][position_ids, :].unsqueeze(0).unsqueeze(0)
# Complex multiplication: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xq_out = torch.stack((xq_out_r, xq_out_i), dim=-1).flatten(-2)
return torch.cat([xq_out.to(x.dtype), x_pass], dim=-1)