|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
from .layers import layer_norm, linear, mlp |
|
from .rope import apply_rotary_emb, precompute_freqs_cis |
|
from .weights import AttentionWeights |
|
from .config import TextConfig |
|
|
|
|
|
def text_encoder(input_ids: torch.Tensor, w: nn.Module): |
|
return F.embedding(input_ids, w.wte) |
|
|
|
|
|
def attn( |
|
x: torch.Tensor, |
|
w: AttentionWeights, |
|
freqs_cis: torch.Tensor, |
|
layer_kv_cache: torch.Tensor, |
|
attn_mask: torch.Tensor, |
|
n_heads: int, |
|
pos: int, |
|
): |
|
bsz, q_len, d_model = x.shape |
|
head_dim = d_model // n_heads |
|
|
|
q, k, v = [ |
|
t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2) |
|
for t in linear(x, w.qkv).chunk(3, dim=-1) |
|
] |
|
|
|
position_ids = torch.arange(pos, pos + q_len, dtype=torch.long) |
|
q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads) |
|
k = apply_rotary_emb(k, freqs_cis, position_ids, n_heads) |
|
|
|
k_, v_ = k, v |
|
if layer_kv_cache is not None: |
|
k = torch.cat([layer_kv_cache[0, :, :, :pos, :], k], dim=2) |
|
v = torch.cat([layer_kv_cache[1, :, :, :pos, :], v], dim=2) |
|
|
|
out = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask).to( |
|
|
|
|
|
|
|
x.dtype |
|
) |
|
out = out.transpose(1, 2).reshape(bsz, q_len, d_model) |
|
out = linear(out, w.proj) |
|
return out, torch.stack([k_, v_]) |
|
|
|
|
|
def text_decoder( |
|
inputs_embeds: torch.Tensor, |
|
w: nn.Module, |
|
kv_cache: torch.Tensor, |
|
pos: int, |
|
config: TextConfig, |
|
): |
|
hidden_BTC = inputs_embeds |
|
new_kv_cache = [torch.empty(0)] * len(w.blocks) |
|
|
|
attn_mask = w.attn_mask[ |
|
:, :, pos : pos + hidden_BTC.size(1), : pos + hidden_BTC.size(1) |
|
] |
|
|
|
for i, block in enumerate(w.blocks): |
|
l_in = layer_norm(hidden_BTC, block.ln) |
|
l_attn, new_kv_cache[i] = attn( |
|
l_in, |
|
block.attn, |
|
freqs_cis=w.freqs_cis, |
|
layer_kv_cache=kv_cache[i], |
|
attn_mask=attn_mask, |
|
n_heads=config.n_heads, |
|
pos=pos, |
|
) |
|
l_mlp = mlp(l_in, block.mlp) |
|
hidden_BTC = hidden_BTC + l_attn + l_mlp |
|
|
|
return hidden_BTC, torch.stack(new_kv_cache) |
|
|
|
|
|
def lm_head(hidden_BTC: torch.Tensor, w: nn.Module): |
|
hidden_BC = hidden_BTC[:, -1, :] |
|
hidden_BC = layer_norm(hidden_BC, w.post_ln) |
|
logits = linear(hidden_BC, w.lm_head) |
|
return logits |
|
|
|
|
|
def prefill( |
|
inputs_embeds: torch.Tensor, |
|
kv_cache: torch.Tensor, |
|
pos: int, |
|
w: nn.Module, |
|
config: TextConfig, |
|
): |
|
|
|
hidden, kv_cache[:, :, :, :, pos : pos + inputs_embeds.size(1), :] = text_decoder( |
|
inputs_embeds, w, kv_cache, pos, config |
|
) |
|
return hidden |
|
|
|
|
|
def decode_one_token( |
|
token_emb: torch.Tensor, |
|
kv_cache: torch.Tensor, |
|
pos: int, |
|
w: nn.Module, |
|
config: TextConfig, |
|
): |
|
hidden, kv_cache_update = text_decoder(token_emb[None], w, kv_cache, pos, config) |
|
logits = lm_head(hidden, w) |
|
return logits, hidden, kv_cache_update |
|
|
|
|
|
def build_text_model(config: TextConfig, dtype: torch.dtype) -> nn.Module: |
|
text = nn.ModuleDict( |
|
{ |
|
"blocks": nn.ModuleList( |
|
[ |
|
nn.ModuleDict( |
|
{ |
|
"ln": nn.LayerNorm(config.dim, dtype=dtype), |
|
"attn": nn.ModuleDict( |
|
{ |
|
"qkv": nn.Linear( |
|
config.dim, 3 * config.dim, dtype=dtype |
|
), |
|
"proj": nn.Linear( |
|
config.dim, config.dim, dtype=dtype |
|
), |
|
} |
|
), |
|
"mlp": nn.ModuleDict( |
|
{ |
|
"fc1": nn.Linear( |
|
config.dim, 4 * config.dim, dtype=dtype |
|
), |
|
"fc2": nn.Linear( |
|
4 * config.dim, config.dim, dtype=dtype |
|
), |
|
} |
|
), |
|
} |
|
) |
|
for _ in range(config.n_layers) |
|
] |
|
), |
|
"post_ln": nn.LayerNorm(config.dim, dtype=dtype), |
|
"lm_head": nn.Linear(config.dim, config.vocab_size, dtype=dtype), |
|
} |
|
) |
|
text.wte = nn.Parameter(torch.empty(config.vocab_size, config.dim, dtype=dtype)) |
|
text.register_buffer( |
|
"freqs_cis", |
|
precompute_freqs_cis(config.dim // (2 * config.n_heads), config.max_context), |
|
persistent=False, |
|
) |
|
|
|
attn_mask = torch.tril( |
|
torch.ones(1, 1, config.max_context, config.max_context, dtype=torch.bool) |
|
) |
|
if config.prefix_attn != 0: |
|
attn_mask[..., : config.prefix_attn, : config.prefix_attn] = 1 |
|
text.register_buffer("attn_mask", attn_mask, persistent=False) |
|
|
|
return text |
|
|