|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-large-mawpnli-calcx-nli-pt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-large-mawpnli-calcx-nli-pt |
|
|
|
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1217 |
|
- Rouge1: 95.7098 |
|
- Rouge2: 89.9271 |
|
- Rougel: 95.5836 |
|
- Rougelsum: 95.5842 |
|
- Gen Len: 10.9151 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 0.2279 | 1.0 | 819 | 0.1290 | 95.075 | 87.8764 | 94.7902 | 94.8057 | 10.7978 | |
|
| 0.0612 | 2.0 | 1638 | 0.1012 | 95.6219 | 89.6809 | 95.4399 | 95.4521 | 10.9029 | |
|
| 0.0418 | 3.0 | 2457 | 0.0972 | 95.7709 | 90.1703 | 95.613 | 95.637 | 10.9328 | |
|
| 0.0272 | 4.0 | 3276 | 0.1174 | 95.7478 | 90.1332 | 95.5931 | 95.6069 | 10.9395 | |
|
| 0.0215 | 5.0 | 4095 | 0.1217 | 95.7098 | 89.9271 | 95.5836 | 95.5842 | 10.9151 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|