Edit model card

VBART Model Card

Model Description

VBART is the first sequence-to-sequence LLM pre-trained on Turkish corpora from scratch on a large scale. It was pre-trained by VNGRS in February 2023.
The model is capable of conditional text generation tasks such as text summarization, paraphrasing, and title generation when fine-tuned. It outperforms its multilingual counterparts, albeit being much smaller than other implementations.

This repository contains pre-trained TensorFlow and Safetensors weights of VBART-Medium-Base.

  • Developed by: VNGRS-AI
  • Model type: Transformer encoder-decoder based on mBART architecture
  • Language(s) (NLP): Turkish
  • License: CC BY-NC-SA 4.0
  • Paper: arXiv

Training Details

Training Data

The base model is pre-trained on vngrs-web-corpus. It is curated by cleaning and filtering Turkish parts of OSCAR-2201 and mC4 datasets. These datasets consist of documents of unstructured web crawl data. More information about the dataset can be found on their respective pages. Data is filtered using a set of heuristics and certain rules, explained in the appendix of our paper.

Limitations

This model is the pre-trained base model and is capable of masked language modeling. Its purpose is to serve as the base model to be fine-tuned for downstream tasks.

Training Procedure

Pre-trained for a total of 63B tokens.

Hardware

  • GPUs: 8 x Nvidia A100-80 GB

Software

  • TensorFlow

Hyperparameters

Pretraining
  • Training regime: fp16 mixed precision
  • Training objective: Span masking (using mask lengths sampled from Poisson distribution λ=3.5, masking 30% of tokens)
  • Optimizer : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6)
  • Scheduler: Custom scheduler from the original Transformers paper (20,000 warm-up steps)
  • Dropout: 0.1
  • Initial Learning rate: 5e-6
  • Training tokens: 63B

Citation

@article{turker2024vbart,
  title={VBART: The Turkish LLM},
  author={Turker, Meliksah and Ari, Erdi and Han, Aydin},
  journal={arXiv preprint arXiv:2403.01308},
  year={2024}
}
Downloads last month
39
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for vngrs-ai/VBART-Medium-Base

Finetunes
1 model

Dataset used to train vngrs-ai/VBART-Medium-Base

Collection including vngrs-ai/VBART-Medium-Base