Qwen/Qwen3-Embedding-0.6B

This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Qwen/Qwen3-Embedding-0.6B
  • Maximum Sequence Length: 192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Language: multilingual
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 192, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
queries = [
    "\u0645\u0627 \u0647\u064a \u0627\u0644\u0623\u0645\u0627\u0643\u0646 \u0627\u0644\u0623\u062e\u0631\u0649 \u0627\u0644\u0645\u0647\u0645\u0629 \u062f\u0627\u062e\u0644 \u062d\u062f\u0648\u062f \u0627\u0644\u062d\u0631\u0645 \u0627\u0644\u0645\u0643\u064a \u0627\u0644\u0634\u0631\u064a\u0641\u061f",
]
documents = [
    'نظيفا»() وذكر القاضي في حديث ابن عباس في «غسل النبي  قال فجففوه بثوب»(). \\n\\nوللتفصيل ينظر (ر: تكفين). \\n\\nالتنعيم \\n\\nالتعريف: \\n\\n1 - التنعيم موضع في الحل في شمال مكة الغربي، وهو حد الحرم من جهة المدينة المنورة. \\n\\nقال الفاسي: المسافة بين باب العمرة وبين أعلام الحرم في هذه الجهة التي في الأرض لا التي على الجبل اثنا عشر ألف ذراع وأربعمائة ذراع وعشرون ذراعا بذراع اليد(). \\n\\nوإنما سمي التنعيم بهذا الاسم لأن الجبل الذي عن يمين الداخل يقال له ناعم والذي عن اليسار يقال له منعم أو نعيم والوادي نعمان(). \\n\\nالأحكام المتعلقة بالتنعيم: \\n\\n2 - أجمع الفقهاء على أن المعتمر المكي لا بد له من',
    'الملك. \\n\\nونقل القاضي زكريا عن النووي في الروضة قوله: المختار أن كون الإبراء تمليكا أو إسقاطا من المسائل التي لا يطلق فيها ترجيح، بل يختلف الراجح بحسب المسائل، لقوة الدليل وضعفه؛ لأن الإبراء إنما يكون تمليكا باعتبار أن الدين مال، وهو إنما يكون مالا في حق من له الدين، فإن أحكام المالية إنما تظهر في حقه. \\n\\nومما غلب فيه معنى التمليك عند المالكية ترجيحهم اشتراط القبول في الإبراء، كما سيأتي(). \\n\\nعلى أن هناك ما يصلح بالاعتبارين (الإسقاط والتمليك بالتساوي). ومنه ما نص عليه الحنفية أنه لو أبرأ الوارث مدين مورثه غير عالم بموته، ثم بان ميتا، فبالنظر إلى أنه إسقاط يصح، وكذا بالنظر',
    'كفارا، ولم ينكر النبي  ذلك عليه(). \\n\\nأخذ الأجرة على التعاويذ والرقى: \\n\\n28 - ذهب جمهور الفقهاء إلى جواز أخذ الأجرة على التعاويذ والرقى، وإليه ذهب عطاء، وأبو قلابة، وأبو ثور، وإسحاق، واستدلوا بحديث أبي سعيد الخدري  الذي سبق ذكره (ف - 14) واستدل الطحاوي للجواز وقال: يجوز أخذ الأجر على الرقى، لأنه ليس على الناس أن يرقي بعضهم بعضا؛ لأن في ذلك تبليغا عن الله تعالى. وكره الزهري أخذ الأجرة على القرآن مطلقا، سواء أكان للتعليم أو للرقية(). \\n\\n\\n\\nتعويض \\n\\nالتعريف: \\n\\n1 - أصل التعويض لغة: العوض، وهو البدل تقول: عوضته تعويضا إذا أعطيته بدل ما ذهب منه. وتعوض منه واعتاض: أخذ العوض()',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.3507, -0.0306, -0.0986]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.3421
cosine_accuracy@3 0.4979
cosine_accuracy@5 0.562
cosine_accuracy@10 0.6452
cosine_precision@1 0.3421
cosine_precision@3 0.166
cosine_precision@5 0.1124
cosine_precision@10 0.0645
cosine_recall@1 0.3421
cosine_recall@3 0.4979
cosine_recall@5 0.562
cosine_recall@10 0.6452
cosine_ndcg@10 0.4867
cosine_mrr@10 0.4367
cosine_map@100 0.4445

Information Retrieval

Metric Value
cosine_accuracy@1 0.2872
cosine_accuracy@3 0.4339
cosine_accuracy@5 0.5003
cosine_accuracy@10 0.5771
cosine_precision@1 0.2872
cosine_precision@3 0.1446
cosine_precision@5 0.1001
cosine_precision@10 0.0577
cosine_recall@1 0.2872
cosine_recall@3 0.4339
cosine_recall@5 0.5003
cosine_recall@10 0.5771
cosine_ndcg@10 0.4253
cosine_mrr@10 0.3774
cosine_map@100 0.3862

Training Details

Training Dataset

Unnamed Dataset

  • Size: 73,994 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 24.27 tokens
    • max: 52 tokens
    • min: 192 tokens
    • mean: 192.0 tokens
    • max: 192 tokens
  • Samples:
    anchor positive
    What specific practices did this group of followers engage in according to the given text? هذا الصنف من المتبعين قد كثر في العصور الأخيرة، فهم يعكفون على عبارات الكتب، لا يتجهون إلا إلى الالتقاط منها، من غير قصد لتعرف دليل ما \n\nيلتقطون، ويبنون عليه، بل يكتمون بأن يقولوا: هناك قول بهذا، وإن لم يكن له دليل قوي(). \n\nولقد كان لهذا الفريق أثران مختلفان: أحدهما خير، وهو ما يتعلق بالقضاء، فإنه إذا كان القضاء لا يصح إلا بالراجح من المذهب، فإن هؤلاء عملهم الاتباع لهذا الراجح، وفي ذلك ضبط للقضاء من غير أن يكون الأمر فرطا. وتقييد القضاء في الأزمان التي تنحرف فيها الأفكار واجب، بل إن الاتباع لا يكون حسنا إلا في الأحكام القضائية. \n\nالأثر الثاني: أن هذا فيه تقديس لأقوال
    How does this group's approach to understanding religious texts impact legal rulings, particularly in matters related to judicial decisions? هذا الصنف من المتبعين قد كثر في العصور الأخيرة، فهم يعكفون على عبارات الكتب، لا يتجهون إلا إلى الالتقاط منها، من غير قصد لتعرف دليل ما \n\nيلتقطون، ويبنون عليه، بل يكتمون بأن يقولوا: هناك قول بهذا، وإن لم يكن له دليل قوي(). \n\nولقد كان لهذا الفريق أثران مختلفان: أحدهما خير، وهو ما يتعلق بالقضاء، فإنه إذا كان القضاء لا يصح إلا بالراجح من المذهب، فإن هؤلاء عملهم الاتباع لهذا الراجح، وفي ذلك ضبط للقضاء من غير أن يكون الأمر فرطا. وتقييد القضاء في الأزمان التي تنحرف فيها الأفكار واجب، بل إن الاتباع لا يكون حسنا إلا في الأحكام القضائية. \n\nالأثر الثاني: أن هذا فيه تقديس لأقوال
    Can you explain the two contrasting effects mentioned for this group's methodology? هذا الصنف من المتبعين قد كثر في العصور الأخيرة، فهم يعكفون على عبارات الكتب، لا يتجهون إلا إلى الالتقاط منها، من غير قصد لتعرف دليل ما \n\nيلتقطون، ويبنون عليه، بل يكتمون بأن يقولوا: هناك قول بهذا، وإن لم يكن له دليل قوي(). \n\nولقد كان لهذا الفريق أثران مختلفان: أحدهما خير، وهو ما يتعلق بالقضاء، فإنه إذا كان القضاء لا يصح إلا بالراجح من المذهب، فإن هؤلاء عملهم الاتباع لهذا الراجح، وفي ذلك ضبط للقضاء من غير أن يكون الأمر فرطا. وتقييد القضاء في الأزمان التي تنحرف فيها الأفكار واجب، بل إن الاتباع لا يكون حسنا إلا في الأحكام القضائية. \n\nالأثر الثاني: أن هذا فيه تقديس لأقوال
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            256
        ],
        "matryoshka_weights": [
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 64
  • gradient_accumulation_steps: 2
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • gradient_checkpointing: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dim_1024_cosine_ndcg@10 dim_256_cosine_ndcg@10
-1 -1 - 0.3765 0.3060
0.0345 10 3.2088 - -
0.0691 20 2.879 - -
0.1036 30 2.4085 - -
0.1382 40 2.0405 - -
0.1727 50 1.8785 0.4311 0.3651
0.2073 60 1.7366 - -
0.2418 70 1.6183 - -
0.2763 80 1.5751 - -
0.3109 90 1.3818 - -
0.3454 100 1.4648 0.4636 0.3970
0.3800 110 1.4749 - -
0.4145 120 1.4677 - -
0.4491 130 1.3521 - -
0.4836 140 1.302 - -
0.5181 150 1.3315 0.4675 0.4084
0.5527 160 1.3341 - -
0.5872 170 1.3045 - -
0.6218 180 1.3123 - -
0.6563 190 1.2239 - -
0.6908 200 1.2158 0.4755 0.4160
0.7254 210 1.286 - -
0.7599 220 1.207 - -
0.7945 230 1.1968 - -
0.8290 240 1.2546 - -
0.8636 250 1.1038 0.4827 0.4226
0.8981 260 1.1658 - -
0.9326 270 1.1338 - -
0.9672 280 1.0918 - -
1.0 290 1.0354 - -
1.0345 300 0.9816 0.4879 0.427
1.0691 310 0.9749 - -
1.1036 320 0.9743 - -
1.1382 330 0.905 - -
1.1727 340 0.9706 - -
1.2073 350 0.9017 0.4866 0.4252
1.2418 360 0.9318 - -
1.2763 370 0.9577 - -
1.3109 380 0.9529 - -
1.3454 390 0.9866 - -
1.3800 400 0.9696 0.4863 0.4243
1.4145 410 0.9322 - -
1.4491 420 0.9313 - -
1.4836 430 0.9352 - -
1.5181 440 0.9885 - -
1.5527 450 0.873 0.4864 0.4254
1.5872 460 0.9204 - -
1.6218 470 0.9117 - -
1.6563 480 0.8663 - -
1.6908 490 0.9397 - -
1.7254 500 0.8624 0.4873 0.4259
1.7599 510 0.91 - -
1.7945 520 0.9202 - -
1.8290 530 0.9903 - -
1.8636 540 0.8564 - -
1.8981 550 0.9594 0.4867 0.4253
1.9326 560 0.9858 - -
1.9672 570 0.9477 - -
2.0 580 0.9216 - -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.0
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.1
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.11.0
  • Datasets: 4.4.1
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
10
Safetensors
Model size
0.6B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for vsevolodl/qwen3-embed-v4-bashar_docs-192

Finetuned
(84)
this model

Evaluation results