Model Card for LaViA-Llama-3-8b

Please follow my github repo LaViA for more details on fine-tuning LaViA model with Llama-3 as the foundatiaon LLM.

Model Details

  • Video Frame Sampling: Considering we adopt CLIP-ViT-L-336px as the image encoder (576 tokens for one image) and the context window of LLaMA-3 is 8k, the video frame sampling rate is set as max(30, num_frames//10).
  • Template: We follow the LLaVA-v1 template for constructing the conversation.
  • Architecture: LLaVA architecture, visual encoder + MLP adapter + LLM backbone

How to Use

Please firstly install lavia via

git clone https://github.com/Victorwz/LaViA
cd LaViA-video-sft
pip install -e ./

You can load the model and perform inference as follows:

from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from PIL import Image
import requests
import cv2
import torch
import base64
import io
from io import BytesIO
import numpy as np

# load model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = get_model_name_from_path("weizhiwang/weizhiwang/LaViA-Llama-38b")
tokenizer, model, image_processor, context_len = load_pretrained_model("weizhiwang/LaViA-Llama-38b", None, model_name, False, False, device=device)

# prepare image input
url = "https://github.com/PKU-YuanGroup/Video-LLaVA/raw/main/videollava/serve/examples/sample_demo_1.mp4"

def read_video(video_url):
    response = requests.get(url)
    if response.status_code != 200:
        print("Failed to download video")
        exit()
    else:
        with open("tmp_video.mp4", 'wb') as f:
            for chunk in response.iter_content(chunk_size=1024):
                f.write(chunk)
    
    video = cv2.VideoCapture("tmp_video.mp4")

    base64Frames = []
    while video.isOpened():
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))

    video.release()
    print(len(base64Frames), "frames read.")
    return base64Frames

video_frames = read_video(video_url=url)
image_tensors = []
samplng_interval = int(len(video_frames) / 10)
for i in range(0, len(video_frames), samplng_interval):
    rawbytes = base64.b64decode(video_frames[i])
    image = Image.open(io.BytesIO(rawbytes)).convert("RGB")
    image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].half().cuda()
    image_tensors.append(image_tensor)

# prepare inputs for the model
text = "\n".join(['<image>' for i in range(len(image_tensors))]) + '\n' + "Why is this video funny"
conv = conv_templates["llama_3"].copy()
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, -200, return_tensors='pt').unsqueeze(0).cuda()

# autoregressively generate text
with torch.inference_mode():
    output_ids = model.generate(
        input_ids,
        images=image_tensors,
        do_sample=False,
        max_new_tokens=512,
        use_cache=True)

outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
print(outputs[0])

The image caption results look like:

The video is funny because it shows a baby girl wearing glasses and reading a book, which is an unusual and amusing sight. It is not common to see a baby wearing glasses and engaging in a reading activity, as they are still developing their motor skills and cognitive abilities. The image captures a cute and endearing moment, as the baby appears to be enjoying her time and learning to read. This scene can evoke a sense of warmth and delight in the viewer, as it showcases the innocence and curiosity of childhood.

Citation

@misc{wang2024LaViA,
      title={LaViA: Fine-Tuning Multimodal LLMs as Task Assistants with Video Instructions}, 
      url={https://github.com/Victorwz/LaViA},
      author={Wang, Weizhi and Luo, Xuan and Yan, Xifeng},
      year={2024},
}
Downloads last month
6
Safetensors
Model size
8.35B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train weizhiwang/LLaVA-Video-Llama-3-8b