|
--- |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: tidy-tab-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tidy-tab-model |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.5060 |
|
- Rouge1: 0.3341 |
|
- Rouge2: 0.1528 |
|
- Rougel: 0.3104 |
|
- Rougelsum: 0.3125 |
|
- Gen Len: 17.75 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 7 | 4.4385 | 0.1922 | 0.0928 | 0.1885 | 0.1862 | 17.9167 | |
|
| No log | 2.0 | 14 | 4.1803 | 0.2265 | 0.1136 | 0.2229 | 0.2214 | 17.75 | |
|
| No log | 3.0 | 21 | 3.9826 | 0.2505 | 0.0972 | 0.2495 | 0.2517 | 17.1667 | |
|
| No log | 4.0 | 28 | 3.8140 | 0.3166 | 0.131 | 0.3117 | 0.3168 | 17.5 | |
|
| No log | 5.0 | 35 | 3.6817 | 0.3442 | 0.1594 | 0.3194 | 0.3211 | 17.4167 | |
|
| No log | 6.0 | 42 | 3.5924 | 0.3341 | 0.1528 | 0.3104 | 0.3125 | 17.75 | |
|
| No log | 7.0 | 49 | 3.5356 | 0.3341 | 0.1528 | 0.3104 | 0.3125 | 17.75 | |
|
| No log | 8.0 | 56 | 3.5060 | 0.3341 | 0.1528 | 0.3104 | 0.3125 | 17.75 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|