openai-fineweb-edu-scorer-mdeberta-multilabel-lr5e-05-20250411_133317
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3799
- Precision: 0.6114
- Recall: 0.5426
- F1 Macro: 0.5665
- Accuracy: 0.6358
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 7.6590 | 0.0260 | 0.25 | 0.0471 | 0.1041 |
0.324 | 0.3908 | 1000 | 0.3145 | 0.6383 | 0.5127 | 0.5396 | 0.6306 |
0.3066 | 0.7816 | 2000 | 0.3437 | 0.4684 | 0.5213 | 0.4920 | 0.6305 |
0.2673 | 1.1723 | 3000 | 0.2894 | 0.6710 | 0.5131 | 0.5397 | 0.6596 |
0.2641 | 1.5631 | 4000 | 0.2950 | 0.4970 | 0.5227 | 0.5058 | 0.6626 |
0.2563 | 1.9539 | 5000 | 0.3521 | 0.5996 | 0.5442 | 0.5075 | 0.6229 |
0.188 | 2.3447 | 6000 | 0.3011 | 0.6249 | 0.5593 | 0.5775 | 0.6560 |
0.1961 | 2.7354 | 7000 | 0.2987 | 0.6092 | 0.5853 | 0.5958 | 0.6483 |
0.1361 | 3.1262 | 8000 | 0.3377 | 0.5869 | 0.5882 | 0.5864 | 0.6246 |
0.1242 | 3.5170 | 9000 | 0.3181 | 0.6063 | 0.5402 | 0.5578 | 0.6440 |
0.1254 | 3.9078 | 10000 | 0.3182 | 0.6054 | 0.5625 | 0.5738 | 0.6490 |
0.0808 | 4.2986 | 11000 | 0.3553 | 0.6027 | 0.5538 | 0.5712 | 0.6263 |
0.0803 | 4.6893 | 12000 | 0.3728 | 0.5814 | 0.5931 | 0.5850 | 0.6146 |
0.0526 | 5.0801 | 13000 | 0.3444 | 0.5992 | 0.5378 | 0.5528 | 0.6393 |
0.0494 | 5.4709 | 14000 | 0.3456 | 0.6000 | 0.5533 | 0.5705 | 0.6382 |
0.0588 | 5.8617 | 15000 | 0.3447 | 0.5988 | 0.5267 | 0.5495 | 0.6319 |
0.0491 | 6.2524 | 16000 | 0.3647 | 0.5927 | 0.5429 | 0.5610 | 0.6238 |
0.044 | 6.6432 | 17000 | 0.3815 | 0.5714 | 0.5699 | 0.5705 | 0.6155 |
0.0305 | 7.0340 | 18000 | 0.3736 | 0.5925 | 0.5519 | 0.5670 | 0.6244 |
0.0319 | 7.4248 | 19000 | 0.3744 | 0.5909 | 0.5563 | 0.5700 | 0.6224 |
0.0412 | 7.8156 | 20000 | 0.3686 | 0.5880 | 0.5728 | 0.5780 | 0.6209 |
0.0314 | 8.2063 | 21000 | 0.3899 | 0.5786 | 0.5412 | 0.5547 | 0.6051 |
0.0334 | 8.5971 | 22000 | 0.3555 | 0.5961 | 0.5458 | 0.5629 | 0.6367 |
0.0293 | 8.9879 | 23000 | 0.3639 | 0.6088 | 0.5379 | 0.5618 | 0.6300 |
0.0219 | 9.3787 | 24000 | 0.3951 | 0.5767 | 0.5631 | 0.5680 | 0.6111 |
0.02 | 9.7694 | 25000 | 0.3751 | 0.5837 | 0.5728 | 0.5779 | 0.6286 |
0.0173 | 10.1602 | 26000 | 0.3717 | 0.6052 | 0.5244 | 0.5493 | 0.6271 |
0.0222 | 10.5510 | 27000 | 0.3716 | 0.5946 | 0.5605 | 0.5742 | 0.6237 |
0.0211 | 10.9418 | 28000 | 0.3647 | 0.5988 | 0.5431 | 0.5611 | 0.6381 |
0.0184 | 11.3326 | 29000 | 0.3838 | 0.6045 | 0.5320 | 0.5551 | 0.6206 |
0.018 | 11.7233 | 30000 | 0.3677 | 0.5948 | 0.5490 | 0.5657 | 0.6360 |
0.0205 | 12.1141 | 31000 | 0.3910 | 0.5917 | 0.5643 | 0.5729 | 0.6178 |
0.0146 | 12.5049 | 32000 | 0.3904 | 0.5806 | 0.5568 | 0.5671 | 0.6219 |
0.0149 | 12.8957 | 33000 | 0.3994 | 0.5890 | 0.5331 | 0.5506 | 0.6094 |
0.0181 | 13.2864 | 34000 | 0.3717 | 0.6000 | 0.5364 | 0.5582 | 0.6344 |
0.014 | 13.6772 | 35000 | 0.3752 | 0.5937 | 0.5604 | 0.5741 | 0.6345 |
0.0118 | 14.0680 | 36000 | 0.3852 | 0.5999 | 0.5532 | 0.5705 | 0.6266 |
0.0126 | 14.4588 | 37000 | 0.3776 | 0.6073 | 0.5260 | 0.5507 | 0.6347 |
0.0105 | 14.8496 | 38000 | 0.3751 | 0.6060 | 0.5463 | 0.5680 | 0.6342 |
0.0077 | 15.2403 | 39000 | 0.4115 | 0.5874 | 0.5554 | 0.5644 | 0.6066 |
0.0114 | 15.6311 | 40000 | 0.3693 | 0.6058 | 0.5475 | 0.5644 | 0.6459 |
0.0102 | 16.0219 | 41000 | 0.3725 | 0.6053 | 0.5555 | 0.5736 | 0.6425 |
0.0073 | 16.4127 | 42000 | 0.3947 | 0.6056 | 0.5494 | 0.5684 | 0.6248 |
0.0118 | 16.8034 | 43000 | 0.3728 | 0.6043 | 0.5517 | 0.5711 | 0.6401 |
0.0063 | 17.1942 | 44000 | 0.3771 | 0.6026 | 0.5569 | 0.5747 | 0.6378 |
0.0073 | 17.5850 | 45000 | 0.3835 | 0.6021 | 0.5467 | 0.5670 | 0.6302 |
0.0101 | 17.9758 | 46000 | 0.3832 | 0.5999 | 0.5500 | 0.5689 | 0.6306 |
0.006 | 18.3665 | 47000 | 0.3793 | 0.6044 | 0.5526 | 0.5722 | 0.6342 |
0.0063 | 18.7573 | 48000 | 0.3902 | 0.6090 | 0.5311 | 0.5559 | 0.6251 |
0.0062 | 19.1481 | 49000 | 0.3822 | 0.6016 | 0.5480 | 0.5681 | 0.6315 |
0.0059 | 19.5389 | 50000 | 0.3753 | 0.6121 | 0.5407 | 0.5647 | 0.6392 |
0.0098 | 19.9297 | 51000 | 0.3799 | 0.6114 | 0.5426 | 0.5665 | 0.6358 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for whoisjones/openai-fineweb-edu-scorer-mdeberta-multilabel-lr5e-05-20250411_133317
Base model
microsoft/mdeberta-v3-base