segment_test

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1260
  • Mean Iou: 0.8447
  • Mean Accuracy: 0.9060
  • Overall Accuracy: 0.9643
  • Per Category Iou: [0.8581731584290526, 0.9316708017224354, 0.6429457606853357, 0.9461543989839276]
  • Per Category Accuracy: [0.9425328146084153, 0.9716290009653072, 0.7414471782174548, 0.9684613946705924]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
1.0598 0.12 20 1.0566 0.4321 0.5515 0.8279 [0.006337257377741027, 0.7300264416674316, 0.23785776348718268, 0.7540601698014678] [0.008091933477034156, 0.9660296098187956, 0.4518657444815921, 0.779822911077032]
0.7539 0.25 40 0.6128 0.4529 0.5206 0.8749 [0.00885438037222906, 0.7887343476637405, 0.18630294846181414, 0.827538656414587] [0.009217881990081138, 0.9747549910409742, 0.23250084632472676, 0.8657848800171862]
0.8122 0.38 60 0.4928 0.4920 0.5507 0.8982 [0.02270113673871408, 0.8263637783329851, 0.2554015068180403, 0.8635887381305902] [0.023653681019224364, 0.9630036206967801, 0.30407150146655104, 0.9122355221296055]
0.5643 0.5 80 0.4269 0.5063 0.5663 0.9129 [0.007592876375505398, 0.8532772644930355, 0.27466317854807065, 0.8898355351518092] [0.007684489073480188, 0.9441805272844986, 0.3632055074118278, 0.9501073674832299]
0.4774 0.62 100 0.3648 0.5490 0.6034 0.9218 [0.054267747505144744, 0.8633878614911209, 0.37650159164096025, 0.9020084353341656] [0.055975413139862956, 0.9428365409577416, 0.45329399467742054, 0.961363980883101]
0.6967 0.75 120 0.3155 0.6158 0.6710 0.9325 [0.19913477919641662, 0.8733583185910088, 0.47153849968591927, 0.9190236996330312] [0.20509568371799589, 0.9502280021743253, 0.5638919570734214, 0.9648268960892941]
0.4543 0.88 140 0.2964 0.6272 0.7016 0.9310 [0.2268179599804783, 0.8694887954672872, 0.4961026114602021, 0.9165896188501754] [0.2321184480311235, 0.9344494411072529, 0.6716976656263668, 0.9680582434884342]
0.2924 1.0 160 0.2722 0.6820 0.7592 0.9384 [0.40849985639476094, 0.8843766461027478, 0.5120505100078259, 0.9231923075849184] [0.4548831992709812, 0.9611082383832005, 0.667739089824088, 0.9532322308907735]
0.3467 1.12 180 0.2517 0.6815 0.7430 0.9414 [0.40527347045732925, 0.8910632241964158, 0.5029203059015287, 0.9266932255262942] [0.447198710197501, 0.9557005046935547, 0.6038508392823166, 0.9651288642296557]
0.5212 1.25 200 0.2396 0.6752 0.7408 0.9427 [0.3668495492266549, 0.8948194469733646, 0.5099936563424119, 0.9292469056689828] [0.3789189141825701, 0.965308543339751, 0.6575510698285852, 0.9614078764674099]
0.3599 1.38 220 0.2108 0.6717 0.7162 0.9446 [0.3204229923658836, 0.891874970369172, 0.5386909667961237, 0.9357227289520356] [0.32437612813907435, 0.9667832593900233, 0.605627503453252, 0.9680877242092517]
0.7198 1.5 240 0.2018 0.7692 0.8618 0.9527 [0.6678205541462868, 0.9118050318864169, 0.5610132418656683, 0.9363469668607539] [0.8350594956451641, 0.9497174012785288, 0.6927260551877853, 0.9696466684460499]
0.3682 1.62 260 0.1931 0.7812 0.8479 0.9538 [0.6890403931363558, 0.9109837638365132, 0.5887742209415688, 0.93605613049878] [0.7620327532726986, 0.9497927662356516, 0.7058595323345466, 0.9739980042388998]
0.3358 1.75 280 0.1947 0.7916 0.8837 0.9550 [0.7285153761152414, 0.9167544021441286, 0.5844378827851311, 0.9366799980170186] [0.8390747945253492, 0.9631461386121828, 0.7712946420849488, 0.9611668227501886]
0.2334 1.88 300 0.2014 0.7843 0.8673 0.9522 [0.7115100993908304, 0.9111127309647635, 0.5831612483285399, 0.9312333415206432] [0.850726390130207, 0.9751160540868734, 0.6929311499390893, 0.9502407282203037]
0.2996 2.0 320 0.1701 0.8027 0.8896 0.9568 [0.7526564111480359, 0.9206156591940219, 0.5997533073741746, 0.9377288799677301] [0.8344833780207841, 0.964968540097336, 0.7965929561072522, 0.9622910891033862]
0.4622 2.12 340 0.1897 0.7614 0.8286 0.9509 [0.5700844122547072, 0.9050700733042791, 0.6361100555452245, 0.9344921716585569] [0.6064108967281776, 0.975059629707727, 0.777640224269875, 0.9551298779200561]
0.338 2.25 360 0.1713 0.8093 0.8947 0.9579 [0.7434863865211815, 0.9179570569529378, 0.6345544665942896, 0.9411654222120547] [0.9167652419255911, 0.9513808608505936, 0.7380297560360868, 0.9725677707832107]
0.1828 2.38 380 0.1613 0.8102 0.8854 0.9583 [0.7563041981028708, 0.923073161283024, 0.6226932638283688, 0.9387242789473116] [0.8467351874244257, 0.9575329724998702, 0.7662636431252486, 0.9708901596701879]
0.1848 2.5 400 0.1523 0.8332 0.8882 0.9617 [0.8272877802882616, 0.9256725856927198, 0.6369852470922355, 0.9430524306296677] [0.8886931987452464, 0.9707900525673887, 0.7260329485953481, 0.9672511041320438]
0.2053 2.62 420 0.1450 0.8382 0.9129 0.9626 [0.8318187789064231, 0.9285519737454524, 0.6480460535396757, 0.9442850494628351] [0.9293894467518357, 0.9631609731907377, 0.7888883123172988, 0.970120219961517]
0.1596 2.75 440 0.1376 0.8327 0.8953 0.9624 [0.8243205167317957, 0.928415735271021, 0.6344793824796972, 0.9436346449664342] [0.9292602036345793, 0.9591271598881472, 0.717386845766276, 0.9752671632199643]
0.137 2.88 460 0.1472 0.8260 0.9081 0.9616 [0.7858947726139123, 0.9279875195406946, 0.6464381724674384, 0.9437068326674424] [0.9422546133221177, 0.9608167124242775, 0.7587838622553998, 0.9706571968763456]
0.1679 3.0 480 0.1471 0.8331 0.9126 0.9624 [0.8265760388185004, 0.9295336697547381, 0.6321998556258659, 0.9441039056088667] [0.9403510155442231, 0.9637791247810575, 0.7769013889609604, 0.9693229385117723]
0.1736 3.12 500 0.1322 0.8402 0.8960 0.9634 [0.8539363341788129, 0.9291877911278092, 0.632669557547822, 0.9451061440414477] [0.9248133641764366, 0.9646743651065282, 0.721404726074956, 0.9731695680841902]
0.234 3.25 520 0.1355 0.8448 0.9076 0.9632 [0.8526502893205608, 0.9289085404109714, 0.6534740415947964, 0.944330630190735] [0.9257553055394915, 0.9662036512136275, 0.7685765188748946, 0.9699754203327694]
0.1183 3.38 540 0.1256 0.8402 0.8954 0.9637 [0.8579969655846054, 0.9294856863546612, 0.6276158375419669, 0.9457592749372996] [0.9389994392163048, 0.9661690813475308, 0.7035145333106, 0.9727224283186038]
0.2085 3.5 560 0.1279 0.8480 0.9079 0.9642 [0.8653295827282605, 0.9310186709909459, 0.6502631789997088, 0.9455883129741319] [0.9333061703730964, 0.9630336872086728, 0.7613438401150507, 0.9739094690773278]
0.3477 3.62 580 0.1419 0.8392 0.9182 0.9627 [0.8356838761929862, 0.9295750569194587, 0.6477355195833494, 0.9437915808167578] [0.9515710705711231, 0.9679427406460035, 0.7873562792352684, 0.9660274217203163]
0.4279 3.75 600 0.1241 0.8453 0.8990 0.9639 [0.8543157504970579, 0.9297143070002641, 0.6517228913538011, 0.9456141839889123] [0.9299589926922874, 0.955372819449404, 0.7305771563983385, 0.9801914665868114]
0.1622 3.88 620 0.1255 0.8438 0.9206 0.9638 [0.8381374979278546, 0.9308920069470188, 0.6604220534808366, 0.9458239210474509] [0.9524867251984649, 0.95692011897332, 0.7977592780664754, 0.9753784831657644]
0.1982 4.0 640 0.1229 0.8484 0.9091 0.9647 [0.8568106859830862, 0.9316640237424656, 0.6584440596013207, 0.9466997405108393] [0.9452293955803235, 0.9595748462766798, 0.754422510013813, 0.9770213126081696]
0.2273 4.12 660 0.1237 0.8444 0.8986 0.9640 [0.8592317269149002, 0.9306231098333563, 0.6421928363458029, 0.9456102319021257] [0.9358165536337031, 0.9691394407999653, 0.7183357178686949, 0.970921035377795]
0.2371 4.25 680 0.1216 0.8460 0.9096 0.9645 [0.8583380957371707, 0.9321090417297068, 0.6472432759450742, 0.9464390728899327] [0.9508328514098453, 0.961341618092252, 0.7507901089967407, 0.9753970829896241]
0.2474 4.38 700 0.1283 0.8411 0.9093 0.9635 [0.8497493402399663, 0.9309167522466655, 0.6387399097291454, 0.9448643127623003] [0.9486861013266039, 0.9710814460747176, 0.7504342819583336, 0.9668204252105732]
0.2696 4.5 720 0.1273 0.8430 0.9049 0.9633 [0.8574838830140721, 0.929602014003094, 0.6403298755318946, 0.9444960387864841] [0.9355734013283564, 0.9743545898715855, 0.7448102379346218, 0.9649164542411783]
0.1506 4.62 740 0.1255 0.8479 0.9182 0.9646 [0.8525455460809918, 0.9327217587877741, 0.6600164613831294, 0.9464177410883513] [0.9496433766188248, 0.9639090597950073, 0.7866569802639545, 0.972458775815393]
0.2033 4.75 760 0.1209 0.8501 0.9107 0.9650 [0.8658943552605436, 0.9327154832962604, 0.6546122598692601, 0.9470460950988947] [0.935571210767047, 0.9689885784341254, 0.76733359526157, 0.9708881136895634]
0.1636 4.88 780 0.1203 0.8483 0.9157 0.9648 [0.8518065574480739, 0.9329685900413733, 0.661433964801116, 0.9468031896359194] [0.9475010076582023, 0.9648201943117868, 0.7779515729284813, 0.9726341721543897]
0.1047 5.0 800 0.1260 0.8447 0.9060 0.9643 [0.8581731584290526, 0.9316708017224354, 0.6429457606853357, 0.9461543989839276] [0.9425328146084153, 0.9716290009653072, 0.7414471782174548, 0.9684613946705924]

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
89
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support