segmentation_model_50ep_2

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0151
  • Mean Iou: 0.4992
  • Mean Accuracy: 0.5002
  • Overall Accuracy: 0.9980
  • Per Category Iou: [0.9979567074182948, 0.0004395926441497546]
  • Per Category Accuracy: [0.9999017103951866, 0.00046175157765122367]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.0176 12.1951 1000 0.0153 0.4991 0.5001 0.9978 [0.9978437819175541, 0.00041657987919183504] [0.9997885648043022, 0.00046175157765122367]
0.0173 24.3902 2000 0.0153 0.4991 0.5001 0.9978 [0.9978095148690534, 0.0004100657472081357] [0.999754230969827, 0.00046175157765122367]
0.0144 36.5854 3000 0.0146 0.4991 0.5001 0.9980 [0.9979986133831826, 0.00026932399676811203] [0.9999440574585123, 0.00027705094659073417]
0.0208 48.7805 4000 0.0151 0.4992 0.5002 0.9980 [0.9979567074182948, 0.0004395926441497546] [0.9999017103951866, 0.00046175157765122367]

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.0
  • Datasets 2.4.0
  • Tokenizers 0.20.3
Downloads last month
63
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for whyoke/segmentation_model_50ep_2

Base model

nvidia/mit-b0
Finetuned
(456)
this model