Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +671 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:57306
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: allenai/specter2_base
|
10 |
+
widget:
|
11 |
+
- source_sentence: UCLR RTS timing
|
12 |
+
sentences:
|
13 |
+
- 'Timing without a timer. '
|
14 |
+
- 'Global structural changes in annexin 12. The roles of phospholipid, Ca2+, and
|
15 |
+
pH. '
|
16 |
+
- 'Length of time between surgery and return to sport after ulnar collateral ligament
|
17 |
+
reconstruction in Major League Baseball pitchers does not predict need for revision
|
18 |
+
surgery. '
|
19 |
+
- source_sentence: Levofloxacin efficacy in bone and joint infections
|
20 |
+
sentences:
|
21 |
+
- 'Levofloxacin. '
|
22 |
+
- 'Squamous cell carcinoma of the uterine cervix producing granulocyte colony-stimulating
|
23 |
+
factor: a report of 4 cases and a review of the literature. '
|
24 |
+
- 'Levofloxacin at the usual dosage to treat bone and joint infections: a cohort
|
25 |
+
analysis. '
|
26 |
+
- source_sentence: Electrical impedance tomography in Barrett's oesophagus
|
27 |
+
sentences:
|
28 |
+
- 'Barrett''s oesophagus: epidemiology, diagnosis and clinical management. '
|
29 |
+
- 'Assessing the conditions for in vivo electrical virtual biopsies in Barrett''s
|
30 |
+
oesophagus. '
|
31 |
+
- 'Serum aminoterminal propeptide of type III procollagen: a potential predictor
|
32 |
+
of the response to growth hormone therapy. '
|
33 |
+
- source_sentence: Population Aging Theory
|
34 |
+
sentences:
|
35 |
+
- 'A cybernetic theory of aging. '
|
36 |
+
- '[In process]. '
|
37 |
+
- 'Robine and Michel''s "Looking forward to a general theory on population aging":
|
38 |
+
commentary. '
|
39 |
+
- source_sentence: Algesimetric study of hypoalgesic effect
|
40 |
+
sentences:
|
41 |
+
- 'Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences
|
42 |
+
susceptibility to bacterial infection. '
|
43 |
+
- '[Pain analysis is basis for correct choice of therapeutic method]. '
|
44 |
+
- '[Experimental algesimetric study of the hypoalgesic effect of body acupuncture]. '
|
45 |
+
pipeline_tag: sentence-similarity
|
46 |
+
library_name: sentence-transformers
|
47 |
+
metrics:
|
48 |
+
- cosine_accuracy@1
|
49 |
+
- cosine_accuracy@3
|
50 |
+
- cosine_accuracy@5
|
51 |
+
- cosine_accuracy@10
|
52 |
+
- cosine_precision@1
|
53 |
+
- cosine_precision@3
|
54 |
+
- cosine_precision@5
|
55 |
+
- cosine_precision@10
|
56 |
+
- cosine_recall@1
|
57 |
+
- cosine_recall@3
|
58 |
+
- cosine_recall@5
|
59 |
+
- cosine_recall@10
|
60 |
+
- cosine_ndcg@10
|
61 |
+
- cosine_mrr@10
|
62 |
+
- cosine_map@100
|
63 |
+
model-index:
|
64 |
+
- name: SentenceTransformer based on allenai/specter2_base
|
65 |
+
results:
|
66 |
+
- task:
|
67 |
+
type: information-retrieval
|
68 |
+
name: Information Retrieval
|
69 |
+
dataset:
|
70 |
+
name: NanoNQ
|
71 |
+
type: NanoNQ
|
72 |
+
metrics:
|
73 |
+
- type: cosine_accuracy@1
|
74 |
+
value: 0.02
|
75 |
+
name: Cosine Accuracy@1
|
76 |
+
- type: cosine_accuracy@3
|
77 |
+
value: 0.06
|
78 |
+
name: Cosine Accuracy@3
|
79 |
+
- type: cosine_accuracy@5
|
80 |
+
value: 0.08
|
81 |
+
name: Cosine Accuracy@5
|
82 |
+
- type: cosine_accuracy@10
|
83 |
+
value: 0.22
|
84 |
+
name: Cosine Accuracy@10
|
85 |
+
- type: cosine_precision@1
|
86 |
+
value: 0.02
|
87 |
+
name: Cosine Precision@1
|
88 |
+
- type: cosine_precision@3
|
89 |
+
value: 0.02
|
90 |
+
name: Cosine Precision@3
|
91 |
+
- type: cosine_precision@5
|
92 |
+
value: 0.016
|
93 |
+
name: Cosine Precision@5
|
94 |
+
- type: cosine_precision@10
|
95 |
+
value: 0.022000000000000002
|
96 |
+
name: Cosine Precision@10
|
97 |
+
- type: cosine_recall@1
|
98 |
+
value: 0.01
|
99 |
+
name: Cosine Recall@1
|
100 |
+
- type: cosine_recall@3
|
101 |
+
value: 0.05
|
102 |
+
name: Cosine Recall@3
|
103 |
+
- type: cosine_recall@5
|
104 |
+
value: 0.07
|
105 |
+
name: Cosine Recall@5
|
106 |
+
- type: cosine_recall@10
|
107 |
+
value: 0.19
|
108 |
+
name: Cosine Recall@10
|
109 |
+
- type: cosine_ndcg@10
|
110 |
+
value: 0.08358031930860417
|
111 |
+
name: Cosine Ndcg@10
|
112 |
+
- type: cosine_mrr@10
|
113 |
+
value: 0.060047619047619044
|
114 |
+
name: Cosine Mrr@10
|
115 |
+
- type: cosine_map@100
|
116 |
+
value: 0.05702682179889267
|
117 |
+
name: Cosine Map@100
|
118 |
+
- task:
|
119 |
+
type: information-retrieval
|
120 |
+
name: Information Retrieval
|
121 |
+
dataset:
|
122 |
+
name: NanoMSMARCO
|
123 |
+
type: NanoMSMARCO
|
124 |
+
metrics:
|
125 |
+
- type: cosine_accuracy@1
|
126 |
+
value: 0.12
|
127 |
+
name: Cosine Accuracy@1
|
128 |
+
- type: cosine_accuracy@3
|
129 |
+
value: 0.3
|
130 |
+
name: Cosine Accuracy@3
|
131 |
+
- type: cosine_accuracy@5
|
132 |
+
value: 0.34
|
133 |
+
name: Cosine Accuracy@5
|
134 |
+
- type: cosine_accuracy@10
|
135 |
+
value: 0.44
|
136 |
+
name: Cosine Accuracy@10
|
137 |
+
- type: cosine_precision@1
|
138 |
+
value: 0.12
|
139 |
+
name: Cosine Precision@1
|
140 |
+
- type: cosine_precision@3
|
141 |
+
value: 0.1
|
142 |
+
name: Cosine Precision@3
|
143 |
+
- type: cosine_precision@5
|
144 |
+
value: 0.068
|
145 |
+
name: Cosine Precision@5
|
146 |
+
- type: cosine_precision@10
|
147 |
+
value: 0.044000000000000004
|
148 |
+
name: Cosine Precision@10
|
149 |
+
- type: cosine_recall@1
|
150 |
+
value: 0.12
|
151 |
+
name: Cosine Recall@1
|
152 |
+
- type: cosine_recall@3
|
153 |
+
value: 0.3
|
154 |
+
name: Cosine Recall@3
|
155 |
+
- type: cosine_recall@5
|
156 |
+
value: 0.34
|
157 |
+
name: Cosine Recall@5
|
158 |
+
- type: cosine_recall@10
|
159 |
+
value: 0.44
|
160 |
+
name: Cosine Recall@10
|
161 |
+
- type: cosine_ndcg@10
|
162 |
+
value: 0.2718119392465092
|
163 |
+
name: Cosine Ndcg@10
|
164 |
+
- type: cosine_mrr@10
|
165 |
+
value: 0.21891269841269842
|
166 |
+
name: Cosine Mrr@10
|
167 |
+
- type: cosine_map@100
|
168 |
+
value: 0.22988006901512154
|
169 |
+
name: Cosine Map@100
|
170 |
+
- task:
|
171 |
+
type: nano-beir
|
172 |
+
name: Nano BEIR
|
173 |
+
dataset:
|
174 |
+
name: NanoBEIR mean
|
175 |
+
type: NanoBEIR_mean
|
176 |
+
metrics:
|
177 |
+
- type: cosine_accuracy@1
|
178 |
+
value: 0.06999999999999999
|
179 |
+
name: Cosine Accuracy@1
|
180 |
+
- type: cosine_accuracy@3
|
181 |
+
value: 0.18
|
182 |
+
name: Cosine Accuracy@3
|
183 |
+
- type: cosine_accuracy@5
|
184 |
+
value: 0.21000000000000002
|
185 |
+
name: Cosine Accuracy@5
|
186 |
+
- type: cosine_accuracy@10
|
187 |
+
value: 0.33
|
188 |
+
name: Cosine Accuracy@10
|
189 |
+
- type: cosine_precision@1
|
190 |
+
value: 0.06999999999999999
|
191 |
+
name: Cosine Precision@1
|
192 |
+
- type: cosine_precision@3
|
193 |
+
value: 0.060000000000000005
|
194 |
+
name: Cosine Precision@3
|
195 |
+
- type: cosine_precision@5
|
196 |
+
value: 0.042
|
197 |
+
name: Cosine Precision@5
|
198 |
+
- type: cosine_precision@10
|
199 |
+
value: 0.033
|
200 |
+
name: Cosine Precision@10
|
201 |
+
- type: cosine_recall@1
|
202 |
+
value: 0.065
|
203 |
+
name: Cosine Recall@1
|
204 |
+
- type: cosine_recall@3
|
205 |
+
value: 0.175
|
206 |
+
name: Cosine Recall@3
|
207 |
+
- type: cosine_recall@5
|
208 |
+
value: 0.20500000000000002
|
209 |
+
name: Cosine Recall@5
|
210 |
+
- type: cosine_recall@10
|
211 |
+
value: 0.315
|
212 |
+
name: Cosine Recall@10
|
213 |
+
- type: cosine_ndcg@10
|
214 |
+
value: 0.17769612927755668
|
215 |
+
name: Cosine Ndcg@10
|
216 |
+
- type: cosine_mrr@10
|
217 |
+
value: 0.13948015873015873
|
218 |
+
name: Cosine Mrr@10
|
219 |
+
- type: cosine_map@100
|
220 |
+
value: 0.1434534454070071
|
221 |
+
name: Cosine Map@100
|
222 |
+
---
|
223 |
+
|
224 |
+
# SentenceTransformer based on allenai/specter2_base
|
225 |
+
|
226 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
227 |
+
|
228 |
+
## Model Details
|
229 |
+
|
230 |
+
### Model Description
|
231 |
+
- **Model Type:** Sentence Transformer
|
232 |
+
- **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 -->
|
233 |
+
- **Maximum Sequence Length:** 512 tokens
|
234 |
+
- **Output Dimensionality:** 768 dimensions
|
235 |
+
- **Similarity Function:** Cosine Similarity
|
236 |
+
- **Training Dataset:**
|
237 |
+
- json
|
238 |
+
<!-- - **Language:** Unknown -->
|
239 |
+
<!-- - **License:** Unknown -->
|
240 |
+
|
241 |
+
### Model Sources
|
242 |
+
|
243 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
244 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
245 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
246 |
+
|
247 |
+
### Full Model Architecture
|
248 |
+
|
249 |
+
```
|
250 |
+
SentenceTransformer(
|
251 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
252 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
253 |
+
)
|
254 |
+
```
|
255 |
+
|
256 |
+
## Usage
|
257 |
+
|
258 |
+
### Direct Usage (Sentence Transformers)
|
259 |
+
|
260 |
+
First install the Sentence Transformers library:
|
261 |
+
|
262 |
+
```bash
|
263 |
+
pip install -U sentence-transformers
|
264 |
+
```
|
265 |
+
|
266 |
+
Then you can load this model and run inference.
|
267 |
+
```python
|
268 |
+
from sentence_transformers import SentenceTransformer
|
269 |
+
|
270 |
+
# Download from the 🤗 Hub
|
271 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
272 |
+
# Run inference
|
273 |
+
sentences = [
|
274 |
+
'Algesimetric study of hypoalgesic effect',
|
275 |
+
'[Experimental algesimetric study of the hypoalgesic effect of body acupuncture]. ',
|
276 |
+
'[Pain analysis is basis for correct choice of therapeutic method]. ',
|
277 |
+
]
|
278 |
+
embeddings = model.encode(sentences)
|
279 |
+
print(embeddings.shape)
|
280 |
+
# [3, 768]
|
281 |
+
|
282 |
+
# Get the similarity scores for the embeddings
|
283 |
+
similarities = model.similarity(embeddings, embeddings)
|
284 |
+
print(similarities.shape)
|
285 |
+
# [3, 3]
|
286 |
+
```
|
287 |
+
|
288 |
+
<!--
|
289 |
+
### Direct Usage (Transformers)
|
290 |
+
|
291 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
292 |
+
|
293 |
+
</details>
|
294 |
+
-->
|
295 |
+
|
296 |
+
<!--
|
297 |
+
### Downstream Usage (Sentence Transformers)
|
298 |
+
|
299 |
+
You can finetune this model on your own dataset.
|
300 |
+
|
301 |
+
<details><summary>Click to expand</summary>
|
302 |
+
|
303 |
+
</details>
|
304 |
+
-->
|
305 |
+
|
306 |
+
<!--
|
307 |
+
### Out-of-Scope Use
|
308 |
+
|
309 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
310 |
+
-->
|
311 |
+
|
312 |
+
## Evaluation
|
313 |
+
|
314 |
+
### Metrics
|
315 |
+
|
316 |
+
#### Information Retrieval
|
317 |
+
|
318 |
+
* Datasets: `NanoNQ` and `NanoMSMARCO`
|
319 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
320 |
+
|
321 |
+
| Metric | NanoNQ | NanoMSMARCO |
|
322 |
+
|:--------------------|:-----------|:------------|
|
323 |
+
| cosine_accuracy@1 | 0.02 | 0.12 |
|
324 |
+
| cosine_accuracy@3 | 0.06 | 0.3 |
|
325 |
+
| cosine_accuracy@5 | 0.08 | 0.34 |
|
326 |
+
| cosine_accuracy@10 | 0.22 | 0.44 |
|
327 |
+
| cosine_precision@1 | 0.02 | 0.12 |
|
328 |
+
| cosine_precision@3 | 0.02 | 0.1 |
|
329 |
+
| cosine_precision@5 | 0.016 | 0.068 |
|
330 |
+
| cosine_precision@10 | 0.022 | 0.044 |
|
331 |
+
| cosine_recall@1 | 0.01 | 0.12 |
|
332 |
+
| cosine_recall@3 | 0.05 | 0.3 |
|
333 |
+
| cosine_recall@5 | 0.07 | 0.34 |
|
334 |
+
| cosine_recall@10 | 0.19 | 0.44 |
|
335 |
+
| **cosine_ndcg@10** | **0.0836** | **0.2718** |
|
336 |
+
| cosine_mrr@10 | 0.06 | 0.2189 |
|
337 |
+
| cosine_map@100 | 0.057 | 0.2299 |
|
338 |
+
|
339 |
+
#### Nano BEIR
|
340 |
+
|
341 |
+
* Dataset: `NanoBEIR_mean`
|
342 |
+
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
|
343 |
+
|
344 |
+
| Metric | Value |
|
345 |
+
|:--------------------|:-----------|
|
346 |
+
| cosine_accuracy@1 | 0.07 |
|
347 |
+
| cosine_accuracy@3 | 0.18 |
|
348 |
+
| cosine_accuracy@5 | 0.21 |
|
349 |
+
| cosine_accuracy@10 | 0.33 |
|
350 |
+
| cosine_precision@1 | 0.07 |
|
351 |
+
| cosine_precision@3 | 0.06 |
|
352 |
+
| cosine_precision@5 | 0.042 |
|
353 |
+
| cosine_precision@10 | 0.033 |
|
354 |
+
| cosine_recall@1 | 0.065 |
|
355 |
+
| cosine_recall@3 | 0.175 |
|
356 |
+
| cosine_recall@5 | 0.205 |
|
357 |
+
| cosine_recall@10 | 0.315 |
|
358 |
+
| **cosine_ndcg@10** | **0.1777** |
|
359 |
+
| cosine_mrr@10 | 0.1395 |
|
360 |
+
| cosine_map@100 | 0.1435 |
|
361 |
+
|
362 |
+
<!--
|
363 |
+
## Bias, Risks and Limitations
|
364 |
+
|
365 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
366 |
+
-->
|
367 |
+
|
368 |
+
<!--
|
369 |
+
### Recommendations
|
370 |
+
|
371 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
372 |
+
-->
|
373 |
+
|
374 |
+
## Training Details
|
375 |
+
|
376 |
+
### Training Dataset
|
377 |
+
|
378 |
+
#### json
|
379 |
+
|
380 |
+
* Dataset: json
|
381 |
+
* Size: 57,306 training samples
|
382 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
383 |
+
* Approximate statistics based on the first 1000 samples:
|
384 |
+
| | anchor | positive | negative |
|
385 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
386 |
+
| type | string | string | string |
|
387 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 7.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.36 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.38 tokens</li><li>max: 49 tokens</li></ul> |
|
388 |
+
* Samples:
|
389 |
+
| anchor | positive | negative |
|
390 |
+
|:-----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
391 |
+
| <code>Intramedullary Hemangioblastoma</code> | <code>Hydrocephalus: a rare initial manifestation of sporadic intramedullary hemangioblastoma : Intramedullary hemangioblastoma presenting as hydrocephalus. </code> | <code>Intramedullary capillary haemangioma. </code> |
|
392 |
+
| <code>Density-based load estimation algorithm</code> | <code>A contact algorithm for density-based load estimation. </code> | <code>Density propagation based adaptive multi-density clustering algorithm. </code> |
|
393 |
+
| <code>Herbicide Adjuvant Efficacy</code> | <code>The efficiency of adjuvants combined with flupyrsulfuron-methyl plus metsulfuron-methyl (Lexus XPE) on weed control. </code> | <code>Are herbicides a once in a century method of weed control? </code> |
|
394 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
395 |
+
```json
|
396 |
+
{
|
397 |
+
"scale": 20.0,
|
398 |
+
"similarity_fct": "cos_sim"
|
399 |
+
}
|
400 |
+
```
|
401 |
+
|
402 |
+
### Training Hyperparameters
|
403 |
+
#### Non-Default Hyperparameters
|
404 |
+
|
405 |
+
- `eval_strategy`: steps
|
406 |
+
- `per_device_train_batch_size`: 64
|
407 |
+
- `per_device_eval_batch_size`: 64
|
408 |
+
- `gradient_accumulation_steps`: 4
|
409 |
+
- `learning_rate`: 2e-07
|
410 |
+
- `num_train_epochs`: 1
|
411 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
412 |
+
- `warmup_ratio`: 0.1
|
413 |
+
- `bf16`: True
|
414 |
+
- `batch_sampler`: no_duplicates
|
415 |
+
|
416 |
+
#### All Hyperparameters
|
417 |
+
<details><summary>Click to expand</summary>
|
418 |
+
|
419 |
+
- `overwrite_output_dir`: False
|
420 |
+
- `do_predict`: False
|
421 |
+
- `eval_strategy`: steps
|
422 |
+
- `prediction_loss_only`: True
|
423 |
+
- `per_device_train_batch_size`: 64
|
424 |
+
- `per_device_eval_batch_size`: 64
|
425 |
+
- `per_gpu_train_batch_size`: None
|
426 |
+
- `per_gpu_eval_batch_size`: None
|
427 |
+
- `gradient_accumulation_steps`: 4
|
428 |
+
- `eval_accumulation_steps`: None
|
429 |
+
- `torch_empty_cache_steps`: None
|
430 |
+
- `learning_rate`: 2e-07
|
431 |
+
- `weight_decay`: 0.0
|
432 |
+
- `adam_beta1`: 0.9
|
433 |
+
- `adam_beta2`: 0.999
|
434 |
+
- `adam_epsilon`: 1e-08
|
435 |
+
- `max_grad_norm`: 1.0
|
436 |
+
- `num_train_epochs`: 1
|
437 |
+
- `max_steps`: -1
|
438 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
439 |
+
- `lr_scheduler_kwargs`: {}
|
440 |
+
- `warmup_ratio`: 0.1
|
441 |
+
- `warmup_steps`: 0
|
442 |
+
- `log_level`: passive
|
443 |
+
- `log_level_replica`: warning
|
444 |
+
- `log_on_each_node`: True
|
445 |
+
- `logging_nan_inf_filter`: True
|
446 |
+
- `save_safetensors`: True
|
447 |
+
- `save_on_each_node`: False
|
448 |
+
- `save_only_model`: False
|
449 |
+
- `restore_callback_states_from_checkpoint`: False
|
450 |
+
- `no_cuda`: False
|
451 |
+
- `use_cpu`: False
|
452 |
+
- `use_mps_device`: False
|
453 |
+
- `seed`: 42
|
454 |
+
- `data_seed`: None
|
455 |
+
- `jit_mode_eval`: False
|
456 |
+
- `use_ipex`: False
|
457 |
+
- `bf16`: True
|
458 |
+
- `fp16`: False
|
459 |
+
- `fp16_opt_level`: O1
|
460 |
+
- `half_precision_backend`: auto
|
461 |
+
- `bf16_full_eval`: False
|
462 |
+
- `fp16_full_eval`: False
|
463 |
+
- `tf32`: None
|
464 |
+
- `local_rank`: 0
|
465 |
+
- `ddp_backend`: None
|
466 |
+
- `tpu_num_cores`: None
|
467 |
+
- `tpu_metrics_debug`: False
|
468 |
+
- `debug`: []
|
469 |
+
- `dataloader_drop_last`: False
|
470 |
+
- `dataloader_num_workers`: 0
|
471 |
+
- `dataloader_prefetch_factor`: None
|
472 |
+
- `past_index`: -1
|
473 |
+
- `disable_tqdm`: False
|
474 |
+
- `remove_unused_columns`: True
|
475 |
+
- `label_names`: None
|
476 |
+
- `load_best_model_at_end`: False
|
477 |
+
- `ignore_data_skip`: False
|
478 |
+
- `fsdp`: []
|
479 |
+
- `fsdp_min_num_params`: 0
|
480 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
481 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
482 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
483 |
+
- `deepspeed`: None
|
484 |
+
- `label_smoothing_factor`: 0.0
|
485 |
+
- `optim`: adamw_torch
|
486 |
+
- `optim_args`: None
|
487 |
+
- `adafactor`: False
|
488 |
+
- `group_by_length`: False
|
489 |
+
- `length_column_name`: length
|
490 |
+
- `ddp_find_unused_parameters`: None
|
491 |
+
- `ddp_bucket_cap_mb`: None
|
492 |
+
- `ddp_broadcast_buffers`: False
|
493 |
+
- `dataloader_pin_memory`: True
|
494 |
+
- `dataloader_persistent_workers`: False
|
495 |
+
- `skip_memory_metrics`: True
|
496 |
+
- `use_legacy_prediction_loop`: False
|
497 |
+
- `push_to_hub`: False
|
498 |
+
- `resume_from_checkpoint`: None
|
499 |
+
- `hub_model_id`: None
|
500 |
+
- `hub_strategy`: every_save
|
501 |
+
- `hub_private_repo`: None
|
502 |
+
- `hub_always_push`: False
|
503 |
+
- `gradient_checkpointing`: False
|
504 |
+
- `gradient_checkpointing_kwargs`: None
|
505 |
+
- `include_inputs_for_metrics`: False
|
506 |
+
- `include_for_metrics`: []
|
507 |
+
- `eval_do_concat_batches`: True
|
508 |
+
- `fp16_backend`: auto
|
509 |
+
- `push_to_hub_model_id`: None
|
510 |
+
- `push_to_hub_organization`: None
|
511 |
+
- `mp_parameters`:
|
512 |
+
- `auto_find_batch_size`: False
|
513 |
+
- `full_determinism`: False
|
514 |
+
- `torchdynamo`: None
|
515 |
+
- `ray_scope`: last
|
516 |
+
- `ddp_timeout`: 1800
|
517 |
+
- `torch_compile`: False
|
518 |
+
- `torch_compile_backend`: None
|
519 |
+
- `torch_compile_mode`: None
|
520 |
+
- `dispatch_batches`: None
|
521 |
+
- `split_batches`: None
|
522 |
+
- `include_tokens_per_second`: False
|
523 |
+
- `include_num_input_tokens_seen`: False
|
524 |
+
- `neftune_noise_alpha`: None
|
525 |
+
- `optim_target_modules`: None
|
526 |
+
- `batch_eval_metrics`: False
|
527 |
+
- `eval_on_start`: False
|
528 |
+
- `use_liger_kernel`: False
|
529 |
+
- `eval_use_gather_object`: False
|
530 |
+
- `average_tokens_across_devices`: False
|
531 |
+
- `prompts`: None
|
532 |
+
- `batch_sampler`: no_duplicates
|
533 |
+
- `multi_dataset_batch_sampler`: proportional
|
534 |
+
|
535 |
+
</details>
|
536 |
+
|
537 |
+
### Training Logs
|
538 |
+
| Epoch | Step | Training Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|
539 |
+
|:------:|:----:|:-------------:|:---------------------:|:--------------------------:|:----------------------------:|
|
540 |
+
| 0 | 0 | - | 0.0682 | 0.2560 | 0.1621 |
|
541 |
+
| 0.0134 | 1 | 14.8664 | - | - | - |
|
542 |
+
| 0.0268 | 2 | 14.6017 | - | - | - |
|
543 |
+
| 0.0401 | 3 | 14.8474 | - | - | - |
|
544 |
+
| 0.0535 | 4 | 14.7156 | - | - | - |
|
545 |
+
| 0.0669 | 5 | 14.5967 | - | - | - |
|
546 |
+
| 0.0803 | 6 | 14.8373 | - | - | - |
|
547 |
+
| 0.0936 | 7 | 14.7819 | - | - | - |
|
548 |
+
| 0.1070 | 8 | 14.5891 | - | - | - |
|
549 |
+
| 0.1204 | 9 | 14.5531 | - | - | - |
|
550 |
+
| 0.1338 | 10 | 14.5441 | - | - | - |
|
551 |
+
| 0.1472 | 11 | 14.5516 | - | - | - |
|
552 |
+
| 0.1605 | 12 | 14.5739 | - | - | - |
|
553 |
+
| 0.1739 | 13 | 14.5974 | - | - | - |
|
554 |
+
| 0.1873 | 14 | 14.4102 | - | - | - |
|
555 |
+
| 0.2007 | 15 | 14.3615 | - | - | - |
|
556 |
+
| 0.2140 | 16 | 14.2877 | - | - | - |
|
557 |
+
| 0.2274 | 17 | 14.2774 | - | - | - |
|
558 |
+
| 0.2408 | 18 | 14.4985 | - | - | - |
|
559 |
+
| 0.2542 | 19 | 14.2307 | - | - | - |
|
560 |
+
| 0.2676 | 20 | 14.3657 | - | - | - |
|
561 |
+
| 0.2809 | 21 | 14.3261 | - | - | - |
|
562 |
+
| 0.2943 | 22 | 14.2946 | - | - | - |
|
563 |
+
| 0.3077 | 23 | 14.2311 | - | - | - |
|
564 |
+
| 0.3211 | 24 | 14.0789 | - | - | - |
|
565 |
+
| 0.3344 | 25 | 13.9392 | 0.0764 | 0.2652 | 0.1708 |
|
566 |
+
| 0.3478 | 26 | 14.0972 | - | - | - |
|
567 |
+
| 0.3612 | 27 | 14.0966 | - | - | - |
|
568 |
+
| 0.3746 | 28 | 13.9205 | - | - | - |
|
569 |
+
| 0.3880 | 29 | 13.8919 | - | - | - |
|
570 |
+
| 0.4013 | 30 | 14.1233 | - | - | - |
|
571 |
+
| 0.4147 | 31 | 14.1351 | - | - | - |
|
572 |
+
| 0.4281 | 32 | 14.1106 | - | - | - |
|
573 |
+
| 0.4415 | 33 | 14.166 | - | - | - |
|
574 |
+
| 0.4548 | 34 | 13.7817 | - | - | - |
|
575 |
+
| 0.4682 | 35 | 14.0178 | - | - | - |
|
576 |
+
| 0.4816 | 36 | 13.8457 | - | - | - |
|
577 |
+
| 0.4950 | 37 | 14.074 | - | - | - |
|
578 |
+
| 0.5084 | 38 | 13.9665 | - | - | - |
|
579 |
+
| 0.5217 | 39 | 13.9726 | - | - | - |
|
580 |
+
| 0.5351 | 40 | 13.8546 | - | - | - |
|
581 |
+
| 0.5485 | 41 | 13.9037 | - | - | - |
|
582 |
+
| 0.5619 | 42 | 13.6977 | - | - | - |
|
583 |
+
| 0.5753 | 43 | 14.0445 | - | - | - |
|
584 |
+
| 0.5886 | 44 | 13.93 | - | - | - |
|
585 |
+
| 0.6020 | 45 | 13.7835 | - | - | - |
|
586 |
+
| 0.6154 | 46 | 13.819 | - | - | - |
|
587 |
+
| 0.6288 | 47 | 13.6248 | - | - | - |
|
588 |
+
| 0.6421 | 48 | 13.846 | - | - | - |
|
589 |
+
| 0.6555 | 49 | 13.6079 | - | - | - |
|
590 |
+
| 0.6689 | 50 | 13.6848 | 0.0836 | 0.2724 | 0.1780 |
|
591 |
+
| 0.6823 | 51 | 13.668 | - | - | - |
|
592 |
+
| 0.6957 | 52 | 13.5784 | - | - | - |
|
593 |
+
| 0.7090 | 53 | 13.7519 | - | - | - |
|
594 |
+
| 0.7224 | 54 | 13.6455 | - | - | - |
|
595 |
+
| 0.7358 | 55 | 13.6757 | - | - | - |
|
596 |
+
| 0.7492 | 56 | 13.5647 | - | - | - |
|
597 |
+
| 0.7625 | 57 | 13.7072 | - | - | - |
|
598 |
+
| 0.7759 | 58 | 13.5603 | - | - | - |
|
599 |
+
| 0.7893 | 59 | 13.6437 | - | - | - |
|
600 |
+
| 0.8027 | 60 | 13.6656 | - | - | - |
|
601 |
+
| 0.8161 | 61 | 13.479 | - | - | - |
|
602 |
+
| 0.8294 | 62 | 13.5965 | - | - | - |
|
603 |
+
| 0.8428 | 63 | 13.6793 | - | - | - |
|
604 |
+
| 0.8562 | 64 | 13.6121 | - | - | - |
|
605 |
+
| 0.8696 | 65 | 13.841 | - | - | - |
|
606 |
+
| 0.8829 | 66 | 13.4793 | - | - | - |
|
607 |
+
| 0.8963 | 67 | 13.5875 | - | - | - |
|
608 |
+
| 0.9097 | 68 | 13.4063 | - | - | - |
|
609 |
+
| 0.9231 | 69 | 13.6365 | - | - | - |
|
610 |
+
| 0.9365 | 70 | 13.4696 | - | - | - |
|
611 |
+
| 0.9498 | 71 | 13.5018 | - | - | - |
|
612 |
+
| 0.9632 | 72 | 13.5956 | - | - | - |
|
613 |
+
| 0.9766 | 73 | 13.3945 | - | - | - |
|
614 |
+
| 0.9900 | 74 | 13.5684 | 0.0836 | 0.2718 | 0.1777 |
|
615 |
+
|
616 |
+
|
617 |
+
### Framework Versions
|
618 |
+
- Python: 3.12.3
|
619 |
+
- Sentence Transformers: 3.3.1
|
620 |
+
- Transformers: 4.49.0
|
621 |
+
- PyTorch: 2.5.1
|
622 |
+
- Accelerate: 1.2.1
|
623 |
+
- Datasets: 2.19.0
|
624 |
+
- Tokenizers: 0.21.0
|
625 |
+
|
626 |
+
## Citation
|
627 |
+
|
628 |
+
### BibTeX
|
629 |
+
|
630 |
+
#### Sentence Transformers
|
631 |
+
```bibtex
|
632 |
+
@inproceedings{reimers-2019-sentence-bert,
|
633 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
634 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
635 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
636 |
+
month = "11",
|
637 |
+
year = "2019",
|
638 |
+
publisher = "Association for Computational Linguistics",
|
639 |
+
url = "https://arxiv.org/abs/1908.10084",
|
640 |
+
}
|
641 |
+
```
|
642 |
+
|
643 |
+
#### MultipleNegativesRankingLoss
|
644 |
+
```bibtex
|
645 |
+
@misc{henderson2017efficient,
|
646 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
647 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
648 |
+
year={2017},
|
649 |
+
eprint={1705.00652},
|
650 |
+
archivePrefix={arXiv},
|
651 |
+
primaryClass={cs.CL}
|
652 |
+
}
|
653 |
+
```
|
654 |
+
|
655 |
+
<!--
|
656 |
+
## Glossary
|
657 |
+
|
658 |
+
*Clearly define terms in order to be accessible across audiences.*
|
659 |
+
-->
|
660 |
+
|
661 |
+
<!--
|
662 |
+
## Model Card Authors
|
663 |
+
|
664 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
665 |
+
-->
|
666 |
+
|
667 |
+
<!--
|
668 |
+
## Model Card Contact
|
669 |
+
|
670 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
671 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "allenai/specter2_base",
|
3 |
+
"adapters": {
|
4 |
+
"adapters": {},
|
5 |
+
"config_map": {},
|
6 |
+
"fusion_config_map": {},
|
7 |
+
"fusions": {}
|
8 |
+
},
|
9 |
+
"architectures": [
|
10 |
+
"BertModel"
|
11 |
+
],
|
12 |
+
"attention_probs_dropout_prob": 0.1,
|
13 |
+
"classifier_dropout": null,
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.1,
|
16 |
+
"hidden_size": 768,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.49.0",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 31090
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.5.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8bcd96b6b1acacc0a66486e23abd76008ca6c512202c3a457a7f9d12fab36a6
|
3 |
+
size 439696224
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"101": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"102": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"103": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|