wwydmanski commited on
Commit
f17bf61
·
verified ·
1 Parent(s): 4bf305b

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,671 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:57306
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: allenai/specter2_base
10
+ widget:
11
+ - source_sentence: UCLR RTS timing
12
+ sentences:
13
+ - 'Timing without a timer. '
14
+ - 'Global structural changes in annexin 12. The roles of phospholipid, Ca2+, and
15
+ pH. '
16
+ - 'Length of time between surgery and return to sport after ulnar collateral ligament
17
+ reconstruction in Major League Baseball pitchers does not predict need for revision
18
+ surgery. '
19
+ - source_sentence: Levofloxacin efficacy in bone and joint infections
20
+ sentences:
21
+ - 'Levofloxacin. '
22
+ - 'Squamous cell carcinoma of the uterine cervix producing granulocyte colony-stimulating
23
+ factor: a report of 4 cases and a review of the literature. '
24
+ - 'Levofloxacin at the usual dosage to treat bone and joint infections: a cohort
25
+ analysis. '
26
+ - source_sentence: Electrical impedance tomography in Barrett's oesophagus
27
+ sentences:
28
+ - 'Barrett''s oesophagus: epidemiology, diagnosis and clinical management. '
29
+ - 'Assessing the conditions for in vivo electrical virtual biopsies in Barrett''s
30
+ oesophagus. '
31
+ - 'Serum aminoterminal propeptide of type III procollagen: a potential predictor
32
+ of the response to growth hormone therapy. '
33
+ - source_sentence: Population Aging Theory
34
+ sentences:
35
+ - 'A cybernetic theory of aging. '
36
+ - '[In process]. '
37
+ - 'Robine and Michel''s "Looking forward to a general theory on population aging":
38
+ commentary. '
39
+ - source_sentence: Algesimetric study of hypoalgesic effect
40
+ sentences:
41
+ - 'Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences
42
+ susceptibility to bacterial infection. '
43
+ - '[Pain analysis is basis for correct choice of therapeutic method]. '
44
+ - '[Experimental algesimetric study of the hypoalgesic effect of body acupuncture]. '
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - cosine_accuracy@1
49
+ - cosine_accuracy@3
50
+ - cosine_accuracy@5
51
+ - cosine_accuracy@10
52
+ - cosine_precision@1
53
+ - cosine_precision@3
54
+ - cosine_precision@5
55
+ - cosine_precision@10
56
+ - cosine_recall@1
57
+ - cosine_recall@3
58
+ - cosine_recall@5
59
+ - cosine_recall@10
60
+ - cosine_ndcg@10
61
+ - cosine_mrr@10
62
+ - cosine_map@100
63
+ model-index:
64
+ - name: SentenceTransformer based on allenai/specter2_base
65
+ results:
66
+ - task:
67
+ type: information-retrieval
68
+ name: Information Retrieval
69
+ dataset:
70
+ name: NanoNQ
71
+ type: NanoNQ
72
+ metrics:
73
+ - type: cosine_accuracy@1
74
+ value: 0.02
75
+ name: Cosine Accuracy@1
76
+ - type: cosine_accuracy@3
77
+ value: 0.06
78
+ name: Cosine Accuracy@3
79
+ - type: cosine_accuracy@5
80
+ value: 0.08
81
+ name: Cosine Accuracy@5
82
+ - type: cosine_accuracy@10
83
+ value: 0.22
84
+ name: Cosine Accuracy@10
85
+ - type: cosine_precision@1
86
+ value: 0.02
87
+ name: Cosine Precision@1
88
+ - type: cosine_precision@3
89
+ value: 0.02
90
+ name: Cosine Precision@3
91
+ - type: cosine_precision@5
92
+ value: 0.016
93
+ name: Cosine Precision@5
94
+ - type: cosine_precision@10
95
+ value: 0.022000000000000002
96
+ name: Cosine Precision@10
97
+ - type: cosine_recall@1
98
+ value: 0.01
99
+ name: Cosine Recall@1
100
+ - type: cosine_recall@3
101
+ value: 0.05
102
+ name: Cosine Recall@3
103
+ - type: cosine_recall@5
104
+ value: 0.07
105
+ name: Cosine Recall@5
106
+ - type: cosine_recall@10
107
+ value: 0.19
108
+ name: Cosine Recall@10
109
+ - type: cosine_ndcg@10
110
+ value: 0.08358031930860417
111
+ name: Cosine Ndcg@10
112
+ - type: cosine_mrr@10
113
+ value: 0.060047619047619044
114
+ name: Cosine Mrr@10
115
+ - type: cosine_map@100
116
+ value: 0.05702682179889267
117
+ name: Cosine Map@100
118
+ - task:
119
+ type: information-retrieval
120
+ name: Information Retrieval
121
+ dataset:
122
+ name: NanoMSMARCO
123
+ type: NanoMSMARCO
124
+ metrics:
125
+ - type: cosine_accuracy@1
126
+ value: 0.12
127
+ name: Cosine Accuracy@1
128
+ - type: cosine_accuracy@3
129
+ value: 0.3
130
+ name: Cosine Accuracy@3
131
+ - type: cosine_accuracy@5
132
+ value: 0.34
133
+ name: Cosine Accuracy@5
134
+ - type: cosine_accuracy@10
135
+ value: 0.44
136
+ name: Cosine Accuracy@10
137
+ - type: cosine_precision@1
138
+ value: 0.12
139
+ name: Cosine Precision@1
140
+ - type: cosine_precision@3
141
+ value: 0.1
142
+ name: Cosine Precision@3
143
+ - type: cosine_precision@5
144
+ value: 0.068
145
+ name: Cosine Precision@5
146
+ - type: cosine_precision@10
147
+ value: 0.044000000000000004
148
+ name: Cosine Precision@10
149
+ - type: cosine_recall@1
150
+ value: 0.12
151
+ name: Cosine Recall@1
152
+ - type: cosine_recall@3
153
+ value: 0.3
154
+ name: Cosine Recall@3
155
+ - type: cosine_recall@5
156
+ value: 0.34
157
+ name: Cosine Recall@5
158
+ - type: cosine_recall@10
159
+ value: 0.44
160
+ name: Cosine Recall@10
161
+ - type: cosine_ndcg@10
162
+ value: 0.2718119392465092
163
+ name: Cosine Ndcg@10
164
+ - type: cosine_mrr@10
165
+ value: 0.21891269841269842
166
+ name: Cosine Mrr@10
167
+ - type: cosine_map@100
168
+ value: 0.22988006901512154
169
+ name: Cosine Map@100
170
+ - task:
171
+ type: nano-beir
172
+ name: Nano BEIR
173
+ dataset:
174
+ name: NanoBEIR mean
175
+ type: NanoBEIR_mean
176
+ metrics:
177
+ - type: cosine_accuracy@1
178
+ value: 0.06999999999999999
179
+ name: Cosine Accuracy@1
180
+ - type: cosine_accuracy@3
181
+ value: 0.18
182
+ name: Cosine Accuracy@3
183
+ - type: cosine_accuracy@5
184
+ value: 0.21000000000000002
185
+ name: Cosine Accuracy@5
186
+ - type: cosine_accuracy@10
187
+ value: 0.33
188
+ name: Cosine Accuracy@10
189
+ - type: cosine_precision@1
190
+ value: 0.06999999999999999
191
+ name: Cosine Precision@1
192
+ - type: cosine_precision@3
193
+ value: 0.060000000000000005
194
+ name: Cosine Precision@3
195
+ - type: cosine_precision@5
196
+ value: 0.042
197
+ name: Cosine Precision@5
198
+ - type: cosine_precision@10
199
+ value: 0.033
200
+ name: Cosine Precision@10
201
+ - type: cosine_recall@1
202
+ value: 0.065
203
+ name: Cosine Recall@1
204
+ - type: cosine_recall@3
205
+ value: 0.175
206
+ name: Cosine Recall@3
207
+ - type: cosine_recall@5
208
+ value: 0.20500000000000002
209
+ name: Cosine Recall@5
210
+ - type: cosine_recall@10
211
+ value: 0.315
212
+ name: Cosine Recall@10
213
+ - type: cosine_ndcg@10
214
+ value: 0.17769612927755668
215
+ name: Cosine Ndcg@10
216
+ - type: cosine_mrr@10
217
+ value: 0.13948015873015873
218
+ name: Cosine Mrr@10
219
+ - type: cosine_map@100
220
+ value: 0.1434534454070071
221
+ name: Cosine Map@100
222
+ ---
223
+
224
+ # SentenceTransformer based on allenai/specter2_base
225
+
226
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
227
+
228
+ ## Model Details
229
+
230
+ ### Model Description
231
+ - **Model Type:** Sentence Transformer
232
+ - **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 -->
233
+ - **Maximum Sequence Length:** 512 tokens
234
+ - **Output Dimensionality:** 768 dimensions
235
+ - **Similarity Function:** Cosine Similarity
236
+ - **Training Dataset:**
237
+ - json
238
+ <!-- - **Language:** Unknown -->
239
+ <!-- - **License:** Unknown -->
240
+
241
+ ### Model Sources
242
+
243
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
244
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
245
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
246
+
247
+ ### Full Model Architecture
248
+
249
+ ```
250
+ SentenceTransformer(
251
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
252
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
253
+ )
254
+ ```
255
+
256
+ ## Usage
257
+
258
+ ### Direct Usage (Sentence Transformers)
259
+
260
+ First install the Sentence Transformers library:
261
+
262
+ ```bash
263
+ pip install -U sentence-transformers
264
+ ```
265
+
266
+ Then you can load this model and run inference.
267
+ ```python
268
+ from sentence_transformers import SentenceTransformer
269
+
270
+ # Download from the 🤗 Hub
271
+ model = SentenceTransformer("sentence_transformers_model_id")
272
+ # Run inference
273
+ sentences = [
274
+ 'Algesimetric study of hypoalgesic effect',
275
+ '[Experimental algesimetric study of the hypoalgesic effect of body acupuncture]. ',
276
+ '[Pain analysis is basis for correct choice of therapeutic method]. ',
277
+ ]
278
+ embeddings = model.encode(sentences)
279
+ print(embeddings.shape)
280
+ # [3, 768]
281
+
282
+ # Get the similarity scores for the embeddings
283
+ similarities = model.similarity(embeddings, embeddings)
284
+ print(similarities.shape)
285
+ # [3, 3]
286
+ ```
287
+
288
+ <!--
289
+ ### Direct Usage (Transformers)
290
+
291
+ <details><summary>Click to see the direct usage in Transformers</summary>
292
+
293
+ </details>
294
+ -->
295
+
296
+ <!--
297
+ ### Downstream Usage (Sentence Transformers)
298
+
299
+ You can finetune this model on your own dataset.
300
+
301
+ <details><summary>Click to expand</summary>
302
+
303
+ </details>
304
+ -->
305
+
306
+ <!--
307
+ ### Out-of-Scope Use
308
+
309
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
310
+ -->
311
+
312
+ ## Evaluation
313
+
314
+ ### Metrics
315
+
316
+ #### Information Retrieval
317
+
318
+ * Datasets: `NanoNQ` and `NanoMSMARCO`
319
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
320
+
321
+ | Metric | NanoNQ | NanoMSMARCO |
322
+ |:--------------------|:-----------|:------------|
323
+ | cosine_accuracy@1 | 0.02 | 0.12 |
324
+ | cosine_accuracy@3 | 0.06 | 0.3 |
325
+ | cosine_accuracy@5 | 0.08 | 0.34 |
326
+ | cosine_accuracy@10 | 0.22 | 0.44 |
327
+ | cosine_precision@1 | 0.02 | 0.12 |
328
+ | cosine_precision@3 | 0.02 | 0.1 |
329
+ | cosine_precision@5 | 0.016 | 0.068 |
330
+ | cosine_precision@10 | 0.022 | 0.044 |
331
+ | cosine_recall@1 | 0.01 | 0.12 |
332
+ | cosine_recall@3 | 0.05 | 0.3 |
333
+ | cosine_recall@5 | 0.07 | 0.34 |
334
+ | cosine_recall@10 | 0.19 | 0.44 |
335
+ | **cosine_ndcg@10** | **0.0836** | **0.2718** |
336
+ | cosine_mrr@10 | 0.06 | 0.2189 |
337
+ | cosine_map@100 | 0.057 | 0.2299 |
338
+
339
+ #### Nano BEIR
340
+
341
+ * Dataset: `NanoBEIR_mean`
342
+ * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
343
+
344
+ | Metric | Value |
345
+ |:--------------------|:-----------|
346
+ | cosine_accuracy@1 | 0.07 |
347
+ | cosine_accuracy@3 | 0.18 |
348
+ | cosine_accuracy@5 | 0.21 |
349
+ | cosine_accuracy@10 | 0.33 |
350
+ | cosine_precision@1 | 0.07 |
351
+ | cosine_precision@3 | 0.06 |
352
+ | cosine_precision@5 | 0.042 |
353
+ | cosine_precision@10 | 0.033 |
354
+ | cosine_recall@1 | 0.065 |
355
+ | cosine_recall@3 | 0.175 |
356
+ | cosine_recall@5 | 0.205 |
357
+ | cosine_recall@10 | 0.315 |
358
+ | **cosine_ndcg@10** | **0.1777** |
359
+ | cosine_mrr@10 | 0.1395 |
360
+ | cosine_map@100 | 0.1435 |
361
+
362
+ <!--
363
+ ## Bias, Risks and Limitations
364
+
365
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
366
+ -->
367
+
368
+ <!--
369
+ ### Recommendations
370
+
371
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
372
+ -->
373
+
374
+ ## Training Details
375
+
376
+ ### Training Dataset
377
+
378
+ #### json
379
+
380
+ * Dataset: json
381
+ * Size: 57,306 training samples
382
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
383
+ * Approximate statistics based on the first 1000 samples:
384
+ | | anchor | positive | negative |
385
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
386
+ | type | string | string | string |
387
+ | details | <ul><li>min: 4 tokens</li><li>mean: 7.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.36 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.38 tokens</li><li>max: 49 tokens</li></ul> |
388
+ * Samples:
389
+ | anchor | positive | negative |
390
+ |:-----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
391
+ | <code>Intramedullary Hemangioblastoma</code> | <code>Hydrocephalus: a rare initial manifestation of sporadic intramedullary hemangioblastoma : Intramedullary hemangioblastoma presenting as hydrocephalus. </code> | <code>Intramedullary capillary haemangioma. </code> |
392
+ | <code>Density-based load estimation algorithm</code> | <code>A contact algorithm for density-based load estimation. </code> | <code>Density propagation based adaptive multi-density clustering algorithm. </code> |
393
+ | <code>Herbicide Adjuvant Efficacy</code> | <code>The efficiency of adjuvants combined with flupyrsulfuron-methyl plus metsulfuron-methyl (Lexus XPE) on weed control. </code> | <code>Are herbicides a once in a century method of weed control? </code> |
394
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
395
+ ```json
396
+ {
397
+ "scale": 20.0,
398
+ "similarity_fct": "cos_sim"
399
+ }
400
+ ```
401
+
402
+ ### Training Hyperparameters
403
+ #### Non-Default Hyperparameters
404
+
405
+ - `eval_strategy`: steps
406
+ - `per_device_train_batch_size`: 64
407
+ - `per_device_eval_batch_size`: 64
408
+ - `gradient_accumulation_steps`: 4
409
+ - `learning_rate`: 2e-07
410
+ - `num_train_epochs`: 1
411
+ - `lr_scheduler_type`: cosine_with_restarts
412
+ - `warmup_ratio`: 0.1
413
+ - `bf16`: True
414
+ - `batch_sampler`: no_duplicates
415
+
416
+ #### All Hyperparameters
417
+ <details><summary>Click to expand</summary>
418
+
419
+ - `overwrite_output_dir`: False
420
+ - `do_predict`: False
421
+ - `eval_strategy`: steps
422
+ - `prediction_loss_only`: True
423
+ - `per_device_train_batch_size`: 64
424
+ - `per_device_eval_batch_size`: 64
425
+ - `per_gpu_train_batch_size`: None
426
+ - `per_gpu_eval_batch_size`: None
427
+ - `gradient_accumulation_steps`: 4
428
+ - `eval_accumulation_steps`: None
429
+ - `torch_empty_cache_steps`: None
430
+ - `learning_rate`: 2e-07
431
+ - `weight_decay`: 0.0
432
+ - `adam_beta1`: 0.9
433
+ - `adam_beta2`: 0.999
434
+ - `adam_epsilon`: 1e-08
435
+ - `max_grad_norm`: 1.0
436
+ - `num_train_epochs`: 1
437
+ - `max_steps`: -1
438
+ - `lr_scheduler_type`: cosine_with_restarts
439
+ - `lr_scheduler_kwargs`: {}
440
+ - `warmup_ratio`: 0.1
441
+ - `warmup_steps`: 0
442
+ - `log_level`: passive
443
+ - `log_level_replica`: warning
444
+ - `log_on_each_node`: True
445
+ - `logging_nan_inf_filter`: True
446
+ - `save_safetensors`: True
447
+ - `save_on_each_node`: False
448
+ - `save_only_model`: False
449
+ - `restore_callback_states_from_checkpoint`: False
450
+ - `no_cuda`: False
451
+ - `use_cpu`: False
452
+ - `use_mps_device`: False
453
+ - `seed`: 42
454
+ - `data_seed`: None
455
+ - `jit_mode_eval`: False
456
+ - `use_ipex`: False
457
+ - `bf16`: True
458
+ - `fp16`: False
459
+ - `fp16_opt_level`: O1
460
+ - `half_precision_backend`: auto
461
+ - `bf16_full_eval`: False
462
+ - `fp16_full_eval`: False
463
+ - `tf32`: None
464
+ - `local_rank`: 0
465
+ - `ddp_backend`: None
466
+ - `tpu_num_cores`: None
467
+ - `tpu_metrics_debug`: False
468
+ - `debug`: []
469
+ - `dataloader_drop_last`: False
470
+ - `dataloader_num_workers`: 0
471
+ - `dataloader_prefetch_factor`: None
472
+ - `past_index`: -1
473
+ - `disable_tqdm`: False
474
+ - `remove_unused_columns`: True
475
+ - `label_names`: None
476
+ - `load_best_model_at_end`: False
477
+ - `ignore_data_skip`: False
478
+ - `fsdp`: []
479
+ - `fsdp_min_num_params`: 0
480
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
481
+ - `fsdp_transformer_layer_cls_to_wrap`: None
482
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
483
+ - `deepspeed`: None
484
+ - `label_smoothing_factor`: 0.0
485
+ - `optim`: adamw_torch
486
+ - `optim_args`: None
487
+ - `adafactor`: False
488
+ - `group_by_length`: False
489
+ - `length_column_name`: length
490
+ - `ddp_find_unused_parameters`: None
491
+ - `ddp_bucket_cap_mb`: None
492
+ - `ddp_broadcast_buffers`: False
493
+ - `dataloader_pin_memory`: True
494
+ - `dataloader_persistent_workers`: False
495
+ - `skip_memory_metrics`: True
496
+ - `use_legacy_prediction_loop`: False
497
+ - `push_to_hub`: False
498
+ - `resume_from_checkpoint`: None
499
+ - `hub_model_id`: None
500
+ - `hub_strategy`: every_save
501
+ - `hub_private_repo`: None
502
+ - `hub_always_push`: False
503
+ - `gradient_checkpointing`: False
504
+ - `gradient_checkpointing_kwargs`: None
505
+ - `include_inputs_for_metrics`: False
506
+ - `include_for_metrics`: []
507
+ - `eval_do_concat_batches`: True
508
+ - `fp16_backend`: auto
509
+ - `push_to_hub_model_id`: None
510
+ - `push_to_hub_organization`: None
511
+ - `mp_parameters`:
512
+ - `auto_find_batch_size`: False
513
+ - `full_determinism`: False
514
+ - `torchdynamo`: None
515
+ - `ray_scope`: last
516
+ - `ddp_timeout`: 1800
517
+ - `torch_compile`: False
518
+ - `torch_compile_backend`: None
519
+ - `torch_compile_mode`: None
520
+ - `dispatch_batches`: None
521
+ - `split_batches`: None
522
+ - `include_tokens_per_second`: False
523
+ - `include_num_input_tokens_seen`: False
524
+ - `neftune_noise_alpha`: None
525
+ - `optim_target_modules`: None
526
+ - `batch_eval_metrics`: False
527
+ - `eval_on_start`: False
528
+ - `use_liger_kernel`: False
529
+ - `eval_use_gather_object`: False
530
+ - `average_tokens_across_devices`: False
531
+ - `prompts`: None
532
+ - `batch_sampler`: no_duplicates
533
+ - `multi_dataset_batch_sampler`: proportional
534
+
535
+ </details>
536
+
537
+ ### Training Logs
538
+ | Epoch | Step | Training Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
539
+ |:------:|:----:|:-------------:|:---------------------:|:--------------------------:|:----------------------------:|
540
+ | 0 | 0 | - | 0.0682 | 0.2560 | 0.1621 |
541
+ | 0.0134 | 1 | 14.8664 | - | - | - |
542
+ | 0.0268 | 2 | 14.6017 | - | - | - |
543
+ | 0.0401 | 3 | 14.8474 | - | - | - |
544
+ | 0.0535 | 4 | 14.7156 | - | - | - |
545
+ | 0.0669 | 5 | 14.5967 | - | - | - |
546
+ | 0.0803 | 6 | 14.8373 | - | - | - |
547
+ | 0.0936 | 7 | 14.7819 | - | - | - |
548
+ | 0.1070 | 8 | 14.5891 | - | - | - |
549
+ | 0.1204 | 9 | 14.5531 | - | - | - |
550
+ | 0.1338 | 10 | 14.5441 | - | - | - |
551
+ | 0.1472 | 11 | 14.5516 | - | - | - |
552
+ | 0.1605 | 12 | 14.5739 | - | - | - |
553
+ | 0.1739 | 13 | 14.5974 | - | - | - |
554
+ | 0.1873 | 14 | 14.4102 | - | - | - |
555
+ | 0.2007 | 15 | 14.3615 | - | - | - |
556
+ | 0.2140 | 16 | 14.2877 | - | - | - |
557
+ | 0.2274 | 17 | 14.2774 | - | - | - |
558
+ | 0.2408 | 18 | 14.4985 | - | - | - |
559
+ | 0.2542 | 19 | 14.2307 | - | - | - |
560
+ | 0.2676 | 20 | 14.3657 | - | - | - |
561
+ | 0.2809 | 21 | 14.3261 | - | - | - |
562
+ | 0.2943 | 22 | 14.2946 | - | - | - |
563
+ | 0.3077 | 23 | 14.2311 | - | - | - |
564
+ | 0.3211 | 24 | 14.0789 | - | - | - |
565
+ | 0.3344 | 25 | 13.9392 | 0.0764 | 0.2652 | 0.1708 |
566
+ | 0.3478 | 26 | 14.0972 | - | - | - |
567
+ | 0.3612 | 27 | 14.0966 | - | - | - |
568
+ | 0.3746 | 28 | 13.9205 | - | - | - |
569
+ | 0.3880 | 29 | 13.8919 | - | - | - |
570
+ | 0.4013 | 30 | 14.1233 | - | - | - |
571
+ | 0.4147 | 31 | 14.1351 | - | - | - |
572
+ | 0.4281 | 32 | 14.1106 | - | - | - |
573
+ | 0.4415 | 33 | 14.166 | - | - | - |
574
+ | 0.4548 | 34 | 13.7817 | - | - | - |
575
+ | 0.4682 | 35 | 14.0178 | - | - | - |
576
+ | 0.4816 | 36 | 13.8457 | - | - | - |
577
+ | 0.4950 | 37 | 14.074 | - | - | - |
578
+ | 0.5084 | 38 | 13.9665 | - | - | - |
579
+ | 0.5217 | 39 | 13.9726 | - | - | - |
580
+ | 0.5351 | 40 | 13.8546 | - | - | - |
581
+ | 0.5485 | 41 | 13.9037 | - | - | - |
582
+ | 0.5619 | 42 | 13.6977 | - | - | - |
583
+ | 0.5753 | 43 | 14.0445 | - | - | - |
584
+ | 0.5886 | 44 | 13.93 | - | - | - |
585
+ | 0.6020 | 45 | 13.7835 | - | - | - |
586
+ | 0.6154 | 46 | 13.819 | - | - | - |
587
+ | 0.6288 | 47 | 13.6248 | - | - | - |
588
+ | 0.6421 | 48 | 13.846 | - | - | - |
589
+ | 0.6555 | 49 | 13.6079 | - | - | - |
590
+ | 0.6689 | 50 | 13.6848 | 0.0836 | 0.2724 | 0.1780 |
591
+ | 0.6823 | 51 | 13.668 | - | - | - |
592
+ | 0.6957 | 52 | 13.5784 | - | - | - |
593
+ | 0.7090 | 53 | 13.7519 | - | - | - |
594
+ | 0.7224 | 54 | 13.6455 | - | - | - |
595
+ | 0.7358 | 55 | 13.6757 | - | - | - |
596
+ | 0.7492 | 56 | 13.5647 | - | - | - |
597
+ | 0.7625 | 57 | 13.7072 | - | - | - |
598
+ | 0.7759 | 58 | 13.5603 | - | - | - |
599
+ | 0.7893 | 59 | 13.6437 | - | - | - |
600
+ | 0.8027 | 60 | 13.6656 | - | - | - |
601
+ | 0.8161 | 61 | 13.479 | - | - | - |
602
+ | 0.8294 | 62 | 13.5965 | - | - | - |
603
+ | 0.8428 | 63 | 13.6793 | - | - | - |
604
+ | 0.8562 | 64 | 13.6121 | - | - | - |
605
+ | 0.8696 | 65 | 13.841 | - | - | - |
606
+ | 0.8829 | 66 | 13.4793 | - | - | - |
607
+ | 0.8963 | 67 | 13.5875 | - | - | - |
608
+ | 0.9097 | 68 | 13.4063 | - | - | - |
609
+ | 0.9231 | 69 | 13.6365 | - | - | - |
610
+ | 0.9365 | 70 | 13.4696 | - | - | - |
611
+ | 0.9498 | 71 | 13.5018 | - | - | - |
612
+ | 0.9632 | 72 | 13.5956 | - | - | - |
613
+ | 0.9766 | 73 | 13.3945 | - | - | - |
614
+ | 0.9900 | 74 | 13.5684 | 0.0836 | 0.2718 | 0.1777 |
615
+
616
+
617
+ ### Framework Versions
618
+ - Python: 3.12.3
619
+ - Sentence Transformers: 3.3.1
620
+ - Transformers: 4.49.0
621
+ - PyTorch: 2.5.1
622
+ - Accelerate: 1.2.1
623
+ - Datasets: 2.19.0
624
+ - Tokenizers: 0.21.0
625
+
626
+ ## Citation
627
+
628
+ ### BibTeX
629
+
630
+ #### Sentence Transformers
631
+ ```bibtex
632
+ @inproceedings{reimers-2019-sentence-bert,
633
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
634
+ author = "Reimers, Nils and Gurevych, Iryna",
635
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
636
+ month = "11",
637
+ year = "2019",
638
+ publisher = "Association for Computational Linguistics",
639
+ url = "https://arxiv.org/abs/1908.10084",
640
+ }
641
+ ```
642
+
643
+ #### MultipleNegativesRankingLoss
644
+ ```bibtex
645
+ @misc{henderson2017efficient,
646
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
647
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
648
+ year={2017},
649
+ eprint={1705.00652},
650
+ archivePrefix={arXiv},
651
+ primaryClass={cs.CL}
652
+ }
653
+ ```
654
+
655
+ <!--
656
+ ## Glossary
657
+
658
+ *Clearly define terms in order to be accessible across audiences.*
659
+ -->
660
+
661
+ <!--
662
+ ## Model Card Authors
663
+
664
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
665
+ -->
666
+
667
+ <!--
668
+ ## Model Card Contact
669
+
670
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
671
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "allenai/specter2_base",
3
+ "adapters": {
4
+ "adapters": {},
5
+ "config_map": {},
6
+ "fusion_config_map": {},
7
+ "fusions": {}
8
+ },
9
+ "architectures": [
10
+ "BertModel"
11
+ ],
12
+ "attention_probs_dropout_prob": 0.1,
13
+ "classifier_dropout": null,
14
+ "hidden_act": "gelu",
15
+ "hidden_dropout_prob": 0.1,
16
+ "hidden_size": 768,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.49.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 31090
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.5.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8bcd96b6b1acacc0a66486e23abd76008ca6c512202c3a457a7f9d12fab36a6
3
+ size 439696224
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff