SentenceTransformer based on allenai/specter2_base

This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: allenai/specter2_base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Algesimetric study of hypoalgesic effect',
    '[Experimental algesimetric study of the hypoalgesic effect of body acupuncture]. ',
    '[Pain analysis is basis for correct choice of therapeutic method]. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric NanoNQ NanoMSMARCO
cosine_accuracy@1 0.02 0.12
cosine_accuracy@3 0.06 0.3
cosine_accuracy@5 0.08 0.34
cosine_accuracy@10 0.22 0.44
cosine_precision@1 0.02 0.12
cosine_precision@3 0.02 0.1
cosine_precision@5 0.016 0.068
cosine_precision@10 0.022 0.044
cosine_recall@1 0.01 0.12
cosine_recall@3 0.05 0.3
cosine_recall@5 0.07 0.34
cosine_recall@10 0.19 0.44
cosine_ndcg@10 0.0836 0.2718
cosine_mrr@10 0.06 0.2189
cosine_map@100 0.057 0.2299

Nano BEIR

Metric Value
cosine_accuracy@1 0.07
cosine_accuracy@3 0.18
cosine_accuracy@5 0.21
cosine_accuracy@10 0.33
cosine_precision@1 0.07
cosine_precision@3 0.06
cosine_precision@5 0.042
cosine_precision@10 0.033
cosine_recall@1 0.065
cosine_recall@3 0.175
cosine_recall@5 0.205
cosine_recall@10 0.315
cosine_ndcg@10 0.1777
cosine_mrr@10 0.1395
cosine_map@100 0.1435

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 57,306 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 7.57 tokens
    • max: 25 tokens
    • min: 4 tokens
    • mean: 20.36 tokens
    • max: 78 tokens
    • min: 3 tokens
    • mean: 12.38 tokens
    • max: 49 tokens
  • Samples:
    anchor positive negative
    Intramedullary Hemangioblastoma Hydrocephalus: a rare initial manifestation of sporadic intramedullary hemangioblastoma : Intramedullary hemangioblastoma presenting as hydrocephalus. Intramedullary capillary haemangioma.
    Density-based load estimation algorithm A contact algorithm for density-based load estimation. Density propagation based adaptive multi-density clustering algorithm.
    Herbicide Adjuvant Efficacy The efficiency of adjuvants combined with flupyrsulfuron-methyl plus metsulfuron-methyl (Lexus XPE) on weed control. Are herbicides a once in a century method of weed control?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • gradient_accumulation_steps: 4
  • learning_rate: 2e-07
  • num_train_epochs: 1
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-07
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss NanoNQ_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
0 0 - 0.0682 0.2560 0.1621
0.0134 1 14.8664 - - -
0.0268 2 14.6017 - - -
0.0401 3 14.8474 - - -
0.0535 4 14.7156 - - -
0.0669 5 14.5967 - - -
0.0803 6 14.8373 - - -
0.0936 7 14.7819 - - -
0.1070 8 14.5891 - - -
0.1204 9 14.5531 - - -
0.1338 10 14.5441 - - -
0.1472 11 14.5516 - - -
0.1605 12 14.5739 - - -
0.1739 13 14.5974 - - -
0.1873 14 14.4102 - - -
0.2007 15 14.3615 - - -
0.2140 16 14.2877 - - -
0.2274 17 14.2774 - - -
0.2408 18 14.4985 - - -
0.2542 19 14.2307 - - -
0.2676 20 14.3657 - - -
0.2809 21 14.3261 - - -
0.2943 22 14.2946 - - -
0.3077 23 14.2311 - - -
0.3211 24 14.0789 - - -
0.3344 25 13.9392 0.0764 0.2652 0.1708
0.3478 26 14.0972 - - -
0.3612 27 14.0966 - - -
0.3746 28 13.9205 - - -
0.3880 29 13.8919 - - -
0.4013 30 14.1233 - - -
0.4147 31 14.1351 - - -
0.4281 32 14.1106 - - -
0.4415 33 14.166 - - -
0.4548 34 13.7817 - - -
0.4682 35 14.0178 - - -
0.4816 36 13.8457 - - -
0.4950 37 14.074 - - -
0.5084 38 13.9665 - - -
0.5217 39 13.9726 - - -
0.5351 40 13.8546 - - -
0.5485 41 13.9037 - - -
0.5619 42 13.6977 - - -
0.5753 43 14.0445 - - -
0.5886 44 13.93 - - -
0.6020 45 13.7835 - - -
0.6154 46 13.819 - - -
0.6288 47 13.6248 - - -
0.6421 48 13.846 - - -
0.6555 49 13.6079 - - -
0.6689 50 13.6848 0.0836 0.2724 0.1780
0.6823 51 13.668 - - -
0.6957 52 13.5784 - - -
0.7090 53 13.7519 - - -
0.7224 54 13.6455 - - -
0.7358 55 13.6757 - - -
0.7492 56 13.5647 - - -
0.7625 57 13.7072 - - -
0.7759 58 13.5603 - - -
0.7893 59 13.6437 - - -
0.8027 60 13.6656 - - -
0.8161 61 13.479 - - -
0.8294 62 13.5965 - - -
0.8428 63 13.6793 - - -
0.8562 64 13.6121 - - -
0.8696 65 13.841 - - -
0.8829 66 13.4793 - - -
0.8963 67 13.5875 - - -
0.9097 68 13.4063 - - -
0.9231 69 13.6365 - - -
0.9365 70 13.4696 - - -
0.9498 71 13.5018 - - -
0.9632 72 13.5956 - - -
0.9766 73 13.3945 - - -
0.9900 74 13.5684 0.0836 0.2718 0.1777

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.3.1
  • Transformers: 4.49.0
  • PyTorch: 2.5.1
  • Accelerate: 1.2.1
  • Datasets: 2.19.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
12
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for wwydmanski/specter2_pubmed-v0.7-full

Finetuned
(18)
this model

Evaluation results