metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What is the Path to Pro program related to?
sentences:
- What types of programs are developed to upskill manufacturing employees?
- What was the overall turnover rate at the company in fiscal year 2023?
- >-
What was the net interest revenue of The Charles Schwab Corporation in
2023?
- source_sentence: What types of businesses does HPE serve?
sentences:
- What types of industries does TTI service?
- What interest rates are applicable to the notes issued in April 2022?
- >-
The total unrealized losses on U.S. Treasury securities amounted to $134
million.
- source_sentence: What is the title of Item 6 in the text?
sentences:
- Item 6—Reserved
- The operating income for the year 2023 was reported as -$74.3 million.
- >-
Commission revenues at Schwab experienced a 10% decrease from 2022 to
2023.
- source_sentence: How is Dynamics' revenue mainly driven?
sentences:
- >-
What are the primary sources of revenue for the company mentioned in the
text?
- How many new stores did the company open in Mexico during fiscal 2022?
- >-
Legal proceedings are discussed in Item 3 of the Annual Report on Form
10-K.
- source_sentence: What is basic earnings per share based on?
sentences:
- How is basic net income per share calculated?
- How did NIKE's fiscal 2023 revenue compare to its fiscal 2022 revenue?
- What types of vessels are included in Chevron's operated marine fleet?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.091
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7970675337008412
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7608446712018138
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7643786819951583
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.68
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7954799079266202
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7583633786848069
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7618248215296402
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6785714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6785714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6785714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7954881703263427
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7577579365079364
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7606385177656011
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7957142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8471428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2652380952380952
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16942857142857143
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6571428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7957142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8471428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7770789777970544
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7379240362811791
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7420186535175607
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6342857142857142
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7642857142857142
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8057142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8657142857142858
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6342857142857142
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25476190476190474
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08657142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6342857142857142
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7642857142857142
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8057142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8657142857142858
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7466817341215128
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.70906462585034
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7141559106614794
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("xiaofengzi/bge-base-financial-matryoshka")
sentences = [
'What is basic earnings per share based on?',
'How is basic net income per share calculated?',
"How did NIKE's fiscal 2023 revenue compare to its fiscal 2022 revenue?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6829 |
cosine_accuracy@3 |
0.82 |
cosine_accuracy@5 |
0.8629 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.6829 |
cosine_precision@3 |
0.2733 |
cosine_precision@5 |
0.1726 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.6829 |
cosine_recall@3 |
0.82 |
cosine_recall@5 |
0.8629 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.7971 |
cosine_mrr@10 |
0.7608 |
cosine_map@100 |
0.7644 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.68 |
cosine_accuracy@3 |
0.8186 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.9114 |
cosine_precision@1 |
0.68 |
cosine_precision@3 |
0.2729 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.0911 |
cosine_recall@1 |
0.68 |
cosine_recall@3 |
0.8186 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.9114 |
cosine_ndcg@10 |
0.7955 |
cosine_mrr@10 |
0.7584 |
cosine_map@100 |
0.7618 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6786 |
cosine_accuracy@3 |
0.81 |
cosine_accuracy@5 |
0.8571 |
cosine_accuracy@10 |
0.9143 |
cosine_precision@1 |
0.6786 |
cosine_precision@3 |
0.27 |
cosine_precision@5 |
0.1714 |
cosine_precision@10 |
0.0914 |
cosine_recall@1 |
0.6786 |
cosine_recall@3 |
0.81 |
cosine_recall@5 |
0.8571 |
cosine_recall@10 |
0.9143 |
cosine_ndcg@10 |
0.7955 |
cosine_mrr@10 |
0.7578 |
cosine_map@100 |
0.7606 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6571 |
cosine_accuracy@3 |
0.7957 |
cosine_accuracy@5 |
0.8471 |
cosine_accuracy@10 |
0.9 |
cosine_precision@1 |
0.6571 |
cosine_precision@3 |
0.2652 |
cosine_precision@5 |
0.1694 |
cosine_precision@10 |
0.09 |
cosine_recall@1 |
0.6571 |
cosine_recall@3 |
0.7957 |
cosine_recall@5 |
0.8471 |
cosine_recall@10 |
0.9 |
cosine_ndcg@10 |
0.7771 |
cosine_mrr@10 |
0.7379 |
cosine_map@100 |
0.742 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6343 |
cosine_accuracy@3 |
0.7643 |
cosine_accuracy@5 |
0.8057 |
cosine_accuracy@10 |
0.8657 |
cosine_precision@1 |
0.6343 |
cosine_precision@3 |
0.2548 |
cosine_precision@5 |
0.1611 |
cosine_precision@10 |
0.0866 |
cosine_recall@1 |
0.6343 |
cosine_recall@3 |
0.7643 |
cosine_recall@5 |
0.8057 |
cosine_recall@10 |
0.8657 |
cosine_ndcg@10 |
0.7467 |
cosine_mrr@10 |
0.7091 |
cosine_map@100 |
0.7142 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 7 tokens
- mean: 20.44 tokens
- max: 51 tokens
|
- min: 6 tokens
- mean: 47.22 tokens
- max: 512 tokens
|
- Samples:
anchor |
positive |
How did the Energy & Transportation segment's sales and profit change in 2023? |
Energy & Transportation's total sales were $28.001 billion in 2023, an increase of $4.249 billion, or 18... and profit was $4.936 billion in 2023, an increase of $1.627 billion, or 49 percent... |
In which segments were acquisitions made in 2022? |
During 2022, acquisitions occurred in Workforce Solutions and USIS operating segments, and the International segment. |
What are the contents found on pages 163 to 309 in the document? |
The Consolidated Financial Statements, together with the Notes thereto and the report thereon dated February 16, 2024, of PricewaterhouseCoopers LLP, appear on pages 163–309. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5644 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7186 |
0.7399 |
0.7414 |
0.6757 |
0.7445 |
1.6244 |
20 |
0.6502 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7379 |
0.7544 |
0.7573 |
0.7069 |
0.7600 |
2.4365 |
30 |
0.434 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7426 |
0.7614 |
0.7616 |
0.7134 |
0.7634 |
3.2487 |
40 |
0.3627 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7420 |
0.7606 |
0.7618 |
0.7142 |
0.7644 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.4
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.6.0+cu118
- Accelerate: 1.6.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}