Maux-GTE-Embeddings
Collection
Embedding models finetuned for persian.
•
4 items
•
Updated
A high-performance Persian sentence embedding model based on Alibaba-NLP/gte-multilingual-base, released in fp16 for efficient inference.
This is the fp16 (half-precision) version of maux-gte-persian-v3, a Sentence Transformers model fine-tuned from Alibaba-NLP/gte-multilingual-base for robust Persian sentence and paragraph embeddings.
The fp16 format enables faster and more memory-efficient inference, especially on modern GPUs.
Key Features:
model.safetensors
)SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, ...})
(2): Normalize()
)
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("xmanii/maux-gte-persian-v3-fp16", trust_remote_code=True)
sentences = [
'برج میلاد در تهران هست',
'یکی از برج های مسکونی تهران برج تهران است',
'تهران برج های زیادی دارد'
]
embeddings = model.encode(sentences)
print(embeddings.shape) # [3, 768]
# Compute cosine similarity
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape) # [3, 3]
model.safetensors
(fp16 weights)modeling.py
, configuration.py
(required for loading)If you use this model, please cite:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
This model is distributed under the same license as the base model and dataset.
For questions or feedback, please open an issue or discussion on the Hugging Face model page.
Base model
Alibaba-NLP/gte-multilingual-base