InLegalBERT-lora / README.md
xshubhamx's picture
Upload README.md with huggingface_hub
f311111 verified
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
base_model: law-ai/InLegalBERT
model-index:
  - name: InLegalBERT-lora
    results: []

InLegalBERT-lora

This model is a fine-tuned version of law-ai/InLegalBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6344
  • Accuracy: 0.8203
  • Precision: 0.8092
  • Recall: 0.8203
  • Precision Macro: 0.6487
  • Recall Macro: 0.6625
  • Macro Fpr: 0.0160
  • Weighted Fpr: 0.0154
  • Weighted Specificity: 0.9771
  • Macro Specificity: 0.9865
  • Weighted Sensitivity: 0.8203
  • Macro Sensitivity: 0.6625
  • F1 Micro: 0.8203
  • F1 Macro: 0.6461
  • F1 Weighted: 0.8125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
No log 1.0 160 1.2013 0.6553 0.6007 0.6553 0.3279 0.3903 0.0365 0.0362 0.9556 0.9741 0.6553 0.3903 0.6553 0.3420 0.6147
No log 2.0 321 0.8279 0.7382 0.7211 0.7382 0.4092 0.4658 0.0248 0.0247 0.9713 0.9806 0.7382 0.4658 0.7382 0.4250 0.7237
No log 3.0 482 0.7130 0.7545 0.7255 0.7545 0.4800 0.4770 0.0233 0.0227 0.9701 0.9816 0.7545 0.4770 0.7545 0.4431 0.7305
1.1985 4.0 643 0.6922 0.7823 0.7594 0.7823 0.5188 0.5283 0.0200 0.0195 0.9740 0.9838 0.7823 0.5283 0.7823 0.5048 0.7660
1.1985 5.0 803 0.6710 0.7940 0.7734 0.7940 0.5450 0.5571 0.0190 0.0182 0.9739 0.9845 0.7940 0.5571 0.7940 0.5257 0.7718
1.1985 6.0 964 0.6455 0.7971 0.7757 0.7971 0.5353 0.5622 0.0184 0.0179 0.9754 0.9848 0.7971 0.5622 0.7971 0.5316 0.7790
0.5721 7.0 1125 0.6395 0.8002 0.7801 0.8002 0.5443 0.5784 0.0181 0.0175 0.9762 0.9851 0.8002 0.5784 0.8002 0.5486 0.7845
0.5721 8.0 1286 0.6317 0.8025 0.7833 0.8025 0.5439 0.5773 0.0178 0.0173 0.9765 0.9853 0.8025 0.5773 0.8025 0.5475 0.7874
0.5721 9.0 1446 0.6137 0.8009 0.7828 0.8009 0.5593 0.5842 0.0179 0.0174 0.9765 0.9852 0.8009 0.5842 0.8009 0.5609 0.7875
0.4166 10.0 1607 0.6249 0.8156 0.8055 0.8156 0.6398 0.6430 0.0165 0.0159 0.9772 0.9862 0.8156 0.6430 0.8156 0.6305 0.8067
0.4166 11.0 1768 0.6426 0.8125 0.8014 0.8125 0.6397 0.6520 0.0169 0.0162 0.9762 0.9859 0.8125 0.6520 0.8125 0.6372 0.8042
0.4166 12.0 1929 0.6305 0.8164 0.8050 0.8164 0.6358 0.6526 0.0164 0.0158 0.9770 0.9862 0.8164 0.6526 0.8164 0.6372 0.8083
0.3406 13.0 2089 0.6276 0.8203 0.8102 0.8203 0.6418 0.6467 0.0160 0.0154 0.9774 0.9865 0.8203 0.6467 0.8203 0.6353 0.8129
0.3406 14.0 2250 0.6428 0.8187 0.8079 0.8187 0.6467 0.6618 0.0162 0.0156 0.9771 0.9864 0.8187 0.6618 0.8187 0.6446 0.8107
0.3406 14.93 2400 0.6344 0.8203 0.8092 0.8203 0.6487 0.6625 0.0160 0.0154 0.9771 0.9865 0.8203 0.6625 0.8203 0.6461 0.8125

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1