roberta-base

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3682
  • Accuracy: 0.8280
  • Precision: 0.8277
  • Recall: 0.8280
  • Precision Macro: 0.7620
  • Recall Macro: 0.7780
  • Macro Fpr: 0.0163
  • Weighted Fpr: 0.0158
  • Weighted Specificity: 0.9771
  • Macro Specificity: 0.9862
  • Weighted Sensitivity: 0.8164
  • Macro Sensitivity: 0.7780
  • F1 Micro: 0.8164
  • F1 Macro: 0.7665
  • F1 Weighted: 0.8173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
1.4921 1.0 643 1.0307 0.6762 0.6362 0.6762 0.3746 0.4027 0.0351 0.0331 0.9438 0.9747 0.6762 0.4027 0.6762 0.3676 0.6382
0.9019 2.0 1286 0.8136 0.7374 0.7158 0.7374 0.4625 0.5149 0.0251 0.0248 0.9701 0.9805 0.7374 0.5149 0.7374 0.4767 0.7197
0.7714 3.0 1929 0.8494 0.7622 0.7386 0.7622 0.5056 0.5354 0.0224 0.0218 0.9713 0.9822 0.7622 0.5354 0.7622 0.5064 0.7441
0.5351 4.0 2572 0.9905 0.7645 0.7657 0.7645 0.5496 0.5653 0.0224 0.0215 0.9673 0.9821 0.7645 0.5653 0.7645 0.5444 0.7546
0.4521 5.0 3215 1.0260 0.7901 0.7882 0.7901 0.6421 0.6315 0.0190 0.0186 0.9745 0.9843 0.7901 0.6315 0.7901 0.6117 0.7794
0.3466 6.0 3858 1.0385 0.7870 0.8134 0.7870 0.6722 0.6335 0.0192 0.0190 0.9777 0.9843 0.7870 0.6335 0.7870 0.6119 0.7890
0.2333 7.0 4501 1.1465 0.8118 0.8064 0.8118 0.6795 0.6784 0.0169 0.0163 0.9746 0.9858 0.8118 0.6784 0.8118 0.6657 0.8058
0.1658 8.0 5144 1.2419 0.8149 0.8149 0.8149 0.7319 0.7440 0.0165 0.0160 0.9771 0.9861 0.8149 0.7440 0.8149 0.7329 0.8121
0.1597 9.0 5787 1.3441 0.8180 0.8259 0.8180 0.8314 0.7702 0.0160 0.0156 0.9768 0.9863 0.8180 0.7702 0.8180 0.7804 0.8190
0.11 10.0 6430 1.3505 0.8025 0.8152 0.8025 0.7520 0.7654 0.0178 0.0173 0.9761 0.9852 0.8025 0.7654 0.8025 0.7500 0.8065
0.0747 11.0 7073 1.3682 0.8280 0.8277 0.8280 0.8096 0.7820 0.0152 0.0146 0.9761 0.9869 0.8280 0.7820 0.8280 0.7850 0.8253
0.0519 12.0 7716 1.4437 0.8164 0.8188 0.8164 0.7731 0.7751 0.0164 0.0158 0.9755 0.9861 0.8164 0.7751 0.8164 0.7699 0.8170
0.0324 13.0 8359 1.4511 0.8087 0.8127 0.8087 0.7552 0.7802 0.0171 0.0166 0.9769 0.9857 0.8087 0.7802 0.8087 0.7638 0.8097
0.0184 14.0 9002 1.5005 0.8141 0.8196 0.8141 0.7613 0.7848 0.0165 0.0160 0.9776 0.9861 0.8141 0.7848 0.8141 0.7681 0.8159
0.0137 15.0 9645 1.4995 0.8164 0.8193 0.8164 0.7620 0.7780 0.0163 0.0158 0.9771 0.9862 0.8164 0.7780 0.8164 0.7665 0.8173

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support