This repo contains a low-rank adapter for LLaMA-7b fit on the Cleaned Alpaca dataset (with the new GPT-4 training data).
This version of the weights was trained with the following hyperparameters:
Cleaned dataset: Snapshot April 8, 2023
Epochs: 6 (Checkpoint with lowest eval loss at 3.6 epochs uploaded here)
Validation set size: 1500
Batch size: 128
Micro batch size: 8
Cutoff length: 512
Learning rate: 3e-4
Lora r: 16
Lora target modules: q_proj, k_proj, v_proj, o_proj
That is:
python finetune.py 
    --base_model='yahma/llama-7b-hf' 
    --data_path 'yahma/alpaca-cleaned' 
    --num_epochs=6 
    --cutoff_len=512 
    --output_dir='./lora-alpaca' 
    --lora_target_modules='[q_proj,k_proj, v_proj, o_proj]' 
    --lora_r=16 
    --val_set_size 1500 
    --micro_batch_size=8
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support
