SentenceTransformer based on denaya/indoSBERT-large
This is a sentence-transformers model finetuned from denaya/indoSBERT-large on the bps-publication-pos-neg-pairs dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: denaya/indoSBERT-large
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 256 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1-3")
# Run inference
sentences = [
'Studi efisiensi industri manufaktr',
'Statistik Potensi Desa Provinsi Maluku 2011',
'Klasifikasi Baku Komoditas Indonesia (KBKI) 2012 Buku 4',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-base-v1-eval
andallstat-semantic-base-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
---|---|---|
pearson_cosine | 0.9659 | 0.9592 |
spearman_cosine | 0.7842 | 0.7818 |
Training Details
Training Dataset
bps-publication-pos-neg-pairs
- Dataset: bps-publication-pos-neg-pairs at 46a5cb7
- Size: 23,478 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 5 tokens
- mean: 11.84 tokens
- max: 24 tokens
- min: 5 tokens
- mean: 10.77 tokens
- max: 28 tokens
- 0: ~72.40%
- 1: ~27.60%
- Samples:
query doc label Direktori perusahaan perantara keuangan bukan koperasi tahun 2006 (SE)
Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2018-2022, Buku 2 Pulau Jawa-Bali
0
Informasi lengkap tentang PPLS 2011
Indeks Harga Perdagangan Besar Indonesia tahun 2005
0
Data konversi GKG ke beras tahun 2012
Indikator Ekonomi Juli 2023
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
bps-publication-pos-neg-pairs
- Dataset: bps-publication-pos-neg-pairs at 46a5cb7
- Size: 5,031 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 5 tokens
- mean: 11.97 tokens
- max: 24 tokens
- min: 5 tokens
- mean: 10.76 tokens
- max: 32 tokens
- 0: ~72.70%
- 1: ~27.30%
- Samples:
query doc label Informasi angka tanaman berkhasiat ogbat dan tanaman hias di tahun 2005
Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2010-2013 - Buku 2 Pulau Jawa-Bali
0
Informasi lengkap statistik horsikultura tahun 2020
NERACA ENERGI INDONESIA 2017-2021
0
Statistik air bersih Indonesia periode 2014-2019
Profil Usaha Konstruksi Perorangan Provinsi Kalimantan Utara, 2022
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 8warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | 0.0053 | 0.7770 | - |
0.5450 | 200 | 0.0023 | 0.0005 | 0.7842 | - |
1.0899 | 400 | 0.0005 | 0.0002 | 0.7842 | - |
1.6349 | 600 | 0.0002 | 0.0002 | 0.7842 | - |
2.1798 | 800 | 0.0001 | 0.0001 | 0.7842 | - |
2.7248 | 1000 | 0.0001 | 0.0001 | 0.7842 | - |
3.2698 | 1200 | 0.0 | 0.0001 | 0.7842 | - |
3.8147 | 1400 | 0.0 | 0.0001 | 0.7842 | - |
4.3597 | 1600 | 0.0 | 0.0001 | 0.7842 | - |
4.9046 | 1800 | 0.0 | 0.0001 | 0.7842 | - |
5.4496 | 2000 | 0.0 | 0.0001 | 0.7842 | - |
5.9946 | 2200 | 0.0 | 0.0001 | 0.7842 | - |
6.5395 | 2400 | 0.0 | 0.0001 | 0.7842 | - |
7.0845 | 2600 | 0.0 | 0.0001 | 0.7842 | - |
7.6294 | 2800 | 0.0 | 0.0001 | 0.7842 | - |
-1 | -1 | - | - | - | 0.7818 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 26
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/allstats-semantic-base-v1-3
Base model
denaya/indoSBERT-largeDataset used to train yahyaabd/allstats-semantic-base-v1-3
Evaluation results
- Pearson Cosine on allstats semantic base v1 evalself-reported0.966
- Spearman Cosine on allstats semantic base v1 evalself-reported0.784
- Pearson Cosine on allstat semantic base v1 testself-reported0.959
- Spearman Cosine on allstat semantic base v1 testself-reported0.782