File size: 71,929 Bytes
e6e5dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 |
# -*- coding: utf-8 -*-
# File: end2end_absa.py
# Time: 18:44 12/08/2025
# Author: YANG, HENG <[email protected]> (杨恒)
# Website: https://yangheng95.github.io
# GitHub: https://github.com/yangheng95
# HuggingFace: https://huggingface.co/yangheng
# Google Scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
# Copyright (C) 2019-2025. All rights reserved.
# ====== New/Replacement imports ======
from typing import List, Dict, Any
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
AutoModelForTokenClassification,
pipeline
)
import torch
import re
from pprint import pprint
# Device configuration
device = 0 if torch.cuda.is_available() else -1
# Model configurations
ASPECT_MODEL_ID = "yangheng/deberta-v3-base-end2end-absa"
SENTI_MODEL_ID = "yangheng/deberta-v3-base-absa-v1.1"
# When classifier's highest confidence < this threshold, optionally use extractor's ASP-XXX as fallback
USE_EXTRACTOR_SENTI_AS_FALLBACK = True
FALLBACK_CONFIDENCE_THRESHOLD = 0.8
# Maximum length and truncation strategy to avoid truncation warnings
TRUNCATION = True
MAX_LENGTH = 512 # Adjust based on GPU memory and text length
BATCH_SIZE = 16 # Batch size, adjust based on resources
# ================================
# Initialize tokenizer and model for aspect extraction
try:
tok_asp = AutoTokenizer.from_pretrained(SENTI_MODEL_ID, use_fast=True)
mdl_asp = AutoModelForTokenClassification.from_pretrained(ASPECT_MODEL_ID)
aspect_extractor = pipeline(
task="token-classification",
model=mdl_asp,
tokenizer=tok_asp,
aggregation_strategy="simple",
device=device,
)
except Exception as e:
print(f"Error loading aspect extraction models: {e}")
raise
# Initialize sentiment classifier (text_pair mode)
try:
sent_classifier = pipeline(
task="text-classification",
model=SENTI_MODEL_ID,
device=device,
return_all_scores=True, # Return all class scores for confidence
function_to_apply="softmax",
top_k=None
)
except Exception as e:
print(f"Error loading sentiment classification model: {e}")
raise
# --- Defensive fallback: when offset is missing, use substring search ---
def _clean_aspect(s: str) -> str:
"""Clean aspect string by removing leading/trailing punctuation and whitespace."""
if not s:
return ""
return re.sub(r'^[\s\.,;:!?\(\)\[\]\{\}"\']+|[\s\.,;:!?\(\)\[\]\{\}"\']+$', "", s).strip()
def _locate_span(text: str, phrase: str):
"""Locate the span of a phrase in text, with case-insensitive fallback."""
if not phrase:
return None
# Try exact match first
pat = re.escape(phrase)
m = re.search(pat, text)
if m:
return m.start(), m.end()
# Try case-insensitive match
m = re.search(pat, text, flags=re.IGNORECASE)
if m:
return m.start(), m.end()
return None
def extract_aspects_for_text(text: str) -> List[Dict[str, Any]]:
"""
Extract aspects from a single text using the aspect extraction model.
Args:
text: Input text to extract aspects from
Returns:
List of aspect dictionaries with position and metadata
"""
if not text.strip():
return []
try:
ents = aspect_extractor(text)
print(f"Raw entities extracted: {ents}") # Debug output
except Exception as e:
print(f"Error in aspect extraction for text '{text[:50]}...': {e}")
return []
aspects = []
seen = set()
for ent in ents:
label = (ent.get("entity_group") or "").lower()
print(f"Processing entity: {ent}, label: {label}") # Debug output
# More flexible label matching
if not any(keyword in label for keyword in ["asp", "aspect", "b-", "i-"]):
print(f"Skipping entity with label: {label}")
continue
word = _clean_aspect(ent.get("word", ""))
if not word: # Skip empty aspects
print(f"Skipping empty aspect")
continue
start = ent.get("start")
end = ent.get("end")
# Fallback: when offset is missing, relocate using substring search
if start is None or end is None:
loc = _locate_span(text, word)
if loc:
start, end = loc
else:
# Skip if position cannot be determined to avoid dirty data
print(f"Could not locate aspect '{word}' in text")
continue
# Avoid duplicates
key = (word.lower(), int(start), int(end))
if key in seen:
continue
seen.add(key)
aspect_dict = {
"aspect": word,
"start": int(start),
"end": int(end),
"extractor_label": ent.get("entity_group", ""),
"extractor_score": float(ent.get("score", 0.0)),
}
aspects.append(aspect_dict)
print(f"Added aspect: {aspect_dict}") # Debug output
print(f"Final aspects for text: {aspects}") # Debug output
return aspects
def classify_aspects(text: str, aspects: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Classify sentiment polarity for each (text, aspect) pair.
Since the aspect extractor already provides sentiment labels (ASP-Positive, etc.),
we can use those directly or optionally run additional classification.
Args:
text: Original text
aspects: List of aspect dictionaries
Returns:
List of aspects enriched with sentiment and confidence information
"""
if not aspects:
return []
enriched = []
for asp in aspects:
# Extract sentiment from the extractor label (ASP-Positive -> Positive)
extractor_label = asp.get("extractor_label", "")
extractor_confidence = asp.get("extractor_score", 0.0)
# Default values
sentiment = "Neutral"
confidence = extractor_confidence
prob_map = {"Positive": 0.33, "Negative": 0.33, "Neutral": 0.33}
# Parse sentiment from extractor label
if "-" in extractor_label:
_, maybe_sentiment = extractor_label.split("-", 1)
if maybe_sentiment.capitalize() in ("Positive", "Negative", "Neutral"):
sentiment = maybe_sentiment.capitalize()
# Create probability distribution with extractor confidence
prob_map = {
"Positive": confidence if sentiment == "Positive" else (1 - confidence) / 2,
"Negative": confidence if sentiment == "Negative" else (1 - confidence) / 2,
"Neutral": confidence if sentiment == "Neutral" else (1 - confidence) / 2
}
# Optionally run additional sentiment classification if confidence is low
if confidence < FALLBACK_CONFIDENCE_THRESHOLD:
try:
# Try additional classification
combined_input = f"{text} [SEP] {asp['aspect']}"
result = sent_classifier(
combined_input,
truncation=TRUNCATION,
max_length=MAX_LENGTH
)
if result and isinstance(result, list) and len(result) > 0:
if isinstance(result[0], dict):
best = max(result, key=lambda d: d.get("score", 0))
classifier_sentiment = best.get("label", sentiment)
classifier_confidence = float(best.get("score", confidence))
# Use classifier result if it has higher confidence
if classifier_confidence > confidence:
sentiment = classifier_sentiment
confidence = classifier_confidence
prob_map = {d.get("label", "Neutral"): float(d.get("score", 0)) for d in result}
except Exception as e:
print(f"Error in additional classification for aspect '{asp['aspect']}': {e}")
# Keep the extractor's result
enriched.append({
**asp,
"sentiment": sentiment,
"confidence": confidence,
"probability": prob_map
})
return enriched
def absa(texts: List[str]) -> List[Dict[str, Any]]:
"""
Main entry point: Extract aspects from each text and classify their sentiment polarity.
Args:
texts: List of input texts
Returns:
List of structured results for each text
"""
if not texts:
return []
results = []
for i, text in enumerate(texts):
if not isinstance(text, str):
print(f"Warning: Text at index {i} is not a string, skipping")
continue
try:
aspects = extract_aspects_for_text(text)
aspects = classify_aspects(text, aspects)
results.append({
"text": text,
"aspects": [a["aspect"] for a in aspects],
"positions": [[a["start"], a["end"]] for a in aspects],
"sentiments": [a["sentiment"] for a in aspects],
"confidence": [a["confidence"] for a in aspects],
"details": aspects # Preserve rich original information
})
except Exception as e:
print(f"Error processing text at index {i}: {e}")
results.append({
"text": text,
"aspects": [],
"positions": [],
"sentiments": [],
"confidence": [],
"details": []
})
return results
if __name__ == "__main__":
# Test samples in multiple languages
samples = [
"The user interface is brilliant, but the documentation is a total mess.",
# English
"这家餐厅的牛排很好吃,但是服务很慢。",
# Chinese (Simplified): The steak at this restaurant is delicious, but the service is slow.
"La batería es malísima, aunque la cámara está muy bien.",
# Spanish: The battery is terrible, although the camera is very good.
"Le film était captivant, mais la fin était décevante.",
# French: The movie was captivating, but the ending was disappointing.
"Das Auto ist sehr sparsam, aber die Sitze sind unbequem.",
# German: The car is very economical, but the seats are uncomfortable.
"Il design è elegante, però il software è pieno di bug.",
# Italian: The design is elegant, but the software is full of bugs.
"O hotel tem uma vista incrível, mas o café da manhã é fraco.",
# Portuguese: The hotel has an incredible view, but the breakfast is weak.
"Книга очень интересная, но перевод оставляет желать лучшего.",
# Russian: The book is very interesting, but the translation leaves much to be desired.
"このアプリは便利だけど、バッテリーの消費が激しい。",
# Japanese: This app is useful, but it drains the battery quickly.
"음식은 맛있었지만, 가격이 너무 비쌌어요.",
# Korean: The food was delicious, but the price was too expensive.
"الخدمة ممتازة، لكن الموقع صعب الوصول إليه.",
# Arabic: The service is excellent, but the location is hard to reach.
"फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।",
# Hindi: The phone's camera is great, but the battery life is bad.
"De locatie is perfect, alleen is het personeel onvriendelijk.",
# Dutch: The location is perfect, however the staff is unfriendly.
"Boken är välskriven, men handlingen är förutsägbar.",
# Swedish: The book is well-written, but the plot is predictable.
"Grafika w grze jest niesamowita, ale fabuła jest nudna.",
# Polish: The graphics in the game are amazing, but the story is boring.
"Ürün kaliteli görünüyor ama kargo çok geç geldi.",
# Turkish: The product looks high quality, but the shipping was very late.
"Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.",
# Vietnamese: The sound quality is good, however the headphones are not very comfortable.
"การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน",
# Thai: The acting was great, but the script was rather weak.
"Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.",
# Greek: The location is fantastic, but the room was very small.
"המשחק מהנה, אבל יש בו יותר מדי פרסומות.",
# Hebrew: The game is fun, but it has too many ads.
"Ponsel ini cepat, tetapi cenderung cepat panas.",
# Indonesian: This phone is fast, but it tends to get hot quickly.
"Ohjelma on tehokas, mutta käyttöliittymä on sekava.",
# Finnish: The program is powerful, but the user interface is confusing.
"Maden var lækker, men portionerne var for små.",
# Danish: The food was delicious, but the portions were too small.
"Počítač je rychlý, ale software je zastaralý.",
# Czech: The computer is fast, but the software is outdated.
]
print("Running ABSA analysis...")
try:
results = absa(samples)
print("\nResults:")
pprint(results, width=120)
except Exception as e:
print(f"Error running ABSA: {e}")
# >>>> # Example output:
"""
Running ABSA analysis...
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, label: asp-neutral
Added aspect: {'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}, label: asp-negative
Added aspect: {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}
Final aspects for text: [{'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}, {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}]
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}]
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, label: asp-positive
Added aspect: {'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}, label: asp-negative
Added aspect: {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}
Final aspects for text: [{'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}, {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, label: asp-neutral
Added aspect: {'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}, label: asp-neutral
Added aspect: {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}
Final aspects for text: [{'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}, {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}]
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}]
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, label: asp-positive
Added aspect: {'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}, label: asp-negative
Added aspect: {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}
Final aspects for text: [{'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}, {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, label: asp-neutral
Added aspect: {'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}, label: asp-neutral
Added aspect: {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}
Final aspects for text: [{'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}, {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, label: asp-neutral
Added aspect: {'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}, label: asp-neutral
Added aspect: {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}
Final aspects for text: [{'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}, {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}]
You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}]
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}, label: asp-negative
Added aspect: {'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}
Final aspects for text: [{'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, label: asp-neutral
Added aspect: {'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}, label: asp-neutral
Added aspect: {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}
Final aspects for text: [{'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}, {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}]
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}]
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}, label: asp-negative
Added aspect: {'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}
Final aspects for text: [{'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}]
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}]
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, label: asp-positive
Skipping empty aspect
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, label: asp-neutral
Added aspect: {'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}, label: asp-neutral
Added aspect: {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}
Final aspects for text: [{'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}, {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, label: asp-neutral
Added aspect: {'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, label: asp-positive
Added aspect: {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, label: asp-neutral
Added aspect: {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}, label: asp-negative
Added aspect: {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}
Final aspects for text: [{'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}, {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}, {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}, {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, label: asp-neutral
Added aspect: {'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, label: asp-neutral
Added aspect: {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, label: asp-negative
Added aspect: {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}, label: asp-neutral
Added aspect: {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}
Final aspects for text: [{'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}, {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}, {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}, {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}]
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}]
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, label: asp-positive
Added aspect: {'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}, label: asp-negative
Added aspect: {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}
Final aspects for text: [{'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}, {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, label: asp-neutral
Added aspect: {'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}, label: asp-negative
Added aspect: {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}
Final aspects for text: [{'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}, {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, label: asp-neutral
Added aspect: {'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, label: asp-neutral
Added aspect: {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}, label: asp-neutral
Added aspect: {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}
Final aspects for text: [{'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}, {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}, {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}]
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}]
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}, label: asp-negative
Added aspect: {'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}
Final aspects for text: [{'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}]
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}]
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, label: asp-positive
Added aspect: {'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}, label: asp-positive
Added aspect: {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}
Final aspects for text: [{'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}, {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}]
Raw entities extracted: []
Final aspects for text: []
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, label: asp-neutral
Added aspect: {'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, label: asp-negative
Added aspect: {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}, label: asp-neutral
Added aspect: {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}
Final aspects for text: [{'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}, {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}, {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}]
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}]
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, label: asp-positive
Added aspect: {'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}, label: asp-positive
Added aspect: {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}
Final aspects for text: [{'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}, {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, label: asp-neutral
Added aspect: {'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, label: asp-neutral
Added aspect: {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}, label: asp-neutral
Added aspect: {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}
Final aspects for text: [{'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}, {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}, {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, label: asp-neutral
Added aspect: {'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}, label: asp-neutral
Added aspect: {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}
Final aspects for text: [{'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}, {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, label: asp-neutral
Added aspect: {'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}, label: asp-negative
Added aspect: {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}
Final aspects for text: [{'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}, {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}]
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}]
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, label: asp-neutral
Added aspect: {'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}, label: asp-neutral
Added aspect: {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}
Final aspects for text: [{'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}, {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}]
Results:
[{'aspects': ['user interface', 'documentation'],
'confidence': [0.517541766166687, 0.5204463601112366],
'details': [{'aspect': 'user interface',
'confidence': 0.517541766166687,
'end': 18,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.517541766166687,
'probability': {'Negative': 0.2412291169166565,
'Neutral': 0.517541766166687,
'Positive': 0.2412291169166565},
'sentiment': 'Neutral',
'start': 3},
{'aspect': 'documentation',
'confidence': 0.5204463601112366,
'end': 54,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.5204463601112366,
'probability': {'Negative': 0.5204463601112366,
'Neutral': 0.2397768199443817,
'Positive': 0.2397768199443817},
'sentiment': 'Negative',
'start': 40}],
'positions': [[3, 18], [40, 54]],
'sentiments': ['Neutral', 'Negative'],
'text': 'The user interface is brilliant, but the documentation is a total mess.'},
{'aspects': ['牛排', '服务'],
'confidence': [0.5346122980117798, 0.5622819066047668],
'details': [{'aspect': '牛排',
'confidence': 0.5346122980117798,
'end': 7,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.5346122980117798,
'probability': {'Negative': 0.2326938509941101,
'Neutral': 0.2326938509941101,
'Positive': 0.5346122980117798},
'sentiment': 'Positive',
'start': 5},
{'aspect': '服务',
'confidence': 0.5622819066047668,
'end': 15,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.5622819066047668,
'probability': {'Negative': 0.5622819066047668,
'Neutral': 0.21885904669761658,
'Positive': 0.21885904669761658},
'sentiment': 'Negative',
'start': 13}],
'positions': [[5, 7], [13, 15]],
'sentiments': ['Positive', 'Negative'],
'text': '这家餐厅的牛排很好吃,但是服务很慢。'},
{'aspects': ['batería', 'cámara'],
'confidence': [0.43364980816841125, 0.44364821910858154],
'details': [{'aspect': 'batería',
'confidence': 0.43364980816841125,
'end': 10,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.43364980816841125,
'probability': {'Negative': 0.2831750959157944,
'Neutral': 0.43364980816841125,
'Positive': 0.2831750959157944},
'sentiment': 'Neutral',
'start': 2},
{'aspect': 'cámara',
'confidence': 0.44364821910858154,
'end': 40,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.44364821910858154,
'probability': {'Negative': 0.27817589044570923,
'Neutral': 0.44364821910858154,
'Positive': 0.27817589044570923},
'sentiment': 'Neutral',
'start': 33}],
'positions': [[2, 10], [33, 40]],
'sentiments': ['Neutral', 'Neutral'],
'text': 'La batería es malísima, aunque la cámara está muy bien.'},
{'aspects': ['film', 'fin'],
'confidence': [0.6539797782897949, 0.41829001903533936],
'details': [{'aspect': 'film',
'confidence': 0.6539797782897949,
'end': 7,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.6539797782897949,
'probability': {'Negative': 0.17301011085510254,
'Neutral': 0.17301011085510254,
'Positive': 0.6539797782897949},
'sentiment': 'Positive',
'start': 2},
{'aspect': 'fin',
'confidence': 0.41829001903533936,
'end': 36,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.41829001903533936,
'probability': {'Negative': 0.41829001903533936,
'Neutral': 0.2908549904823303,
'Positive': 0.2908549904823303},
'sentiment': 'Negative',
'start': 32}],
'positions': [[2, 7], [32, 36]],
'sentiments': ['Positive', 'Negative'],
'text': 'Le film était captivant, mais la fin était décevante.'},
{'aspects': ['Auto', 'Sitze'],
'confidence': [0.5750167965888977, 0.4986541271209717],
'details': [{'aspect': 'Auto',
'confidence': 0.5750167965888977,
'end': 8,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5750167965888977,
'probability': {'Negative': 0.21249160170555115,
'Neutral': 0.5750167965888977,
'Positive': 0.21249160170555115},
'sentiment': 'Neutral',
'start': 3},
{'aspect': 'Sitze',
'confidence': 0.4986541271209717,
'end': 41,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.4986541271209717,
'probability': {'Negative': 0.25067293643951416,
'Neutral': 0.4986541271209717,
'Positive': 0.25067293643951416},
'sentiment': 'Neutral',
'start': 35}],
'positions': [[3, 8], [35, 41]],
'sentiments': ['Neutral', 'Neutral'],
'text': 'Das Auto ist sehr sparsam, aber die Sitze sind unbequem.'},
{'aspects': ['design', 'software'],
'confidence': [0.6298937201499939, 0.6058070063591003],
'details': [{'aspect': 'design',
'confidence': 0.6298937201499939,
'end': 9,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.6298937201499939,
'probability': {'Negative': 0.18505313992500305,
'Neutral': 0.6298937201499939,
'Positive': 0.18505313992500305},
'sentiment': 'Neutral',
'start': 2},
{'aspect': 'software',
'confidence': 0.6058070063591003,
'end': 38,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.6058070063591003,
'probability': {'Negative': 0.19709649682044983,
'Neutral': 0.6058070063591003,
'Positive': 0.19709649682044983},
'sentiment': 'Neutral',
'start': 29}],
'positions': [[2, 9], [29, 38]],
'sentiments': ['Neutral', 'Neutral'],
'text': 'Il design è elegante, però il software è pieno di bug.'},
{'aspects': ['café'],
'confidence': [0.56500643491745],
'details': [{'aspect': 'café',
'confidence': 0.56500643491745,
'end': 42,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.56500643491745,
'probability': {'Negative': 0.56500643491745,
'Neutral': 0.21749678254127502,
'Positive': 0.21749678254127502},
'sentiment': 'Negative',
'start': 37}],
'positions': [[37, 42]],
'sentiments': ['Negative'],
'text': 'O hotel tem uma vista incrível, mas o café da manhã é fraco.'},
{'aspects': ['Кни', 'пере'],
'confidence': [0.42165103554725647, 0.5683889389038086],
'details': [{'aspect': 'Кни',
'confidence': 0.42165103554725647,
'end': 3,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.42165103554725647,
'probability': {'Negative': 0.28917448222637177,
'Neutral': 0.42165103554725647,
'Positive': 0.28917448222637177},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'пере',
'confidence': 0.5683889389038086,
'end': 31,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5683889389038086,
'probability': {'Negative': 0.2158055305480957,
'Neutral': 0.5683889389038086,
'Positive': 0.2158055305480957},
'sentiment': 'Neutral',
'start': 26}],
'positions': [[0, 3], [26, 31]],
'sentiments': ['Neutral', 'Neutral'],
'text': 'Книга очень интересная, но перевод оставляет желать лучшего.'},
{'aspects': ['バッテリー'],
'confidence': [0.5808011293411255],
'details': [{'aspect': 'バッテリー',
'confidence': 0.5808011293411255,
'end': 17,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.5808011293411255,
'probability': {'Negative': 0.5808011293411255,
'Neutral': 0.20959943532943726,
'Positive': 0.20959943532943726},
'sentiment': 'Negative',
'start': 12}],
'positions': [[12, 17]],
'sentiments': ['Negative'],
'text': 'このアプリは便利だけど、バッテリーの消費が激しい。'},
{'aspects': ['음식', '가격'],
'confidence': [0.5432428121566772, 0.46728911995887756],
'details': [{'aspect': '음식',
'confidence': 0.5432428121566772,
'end': 2,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5432428121566772,
'probability': {'Negative': 0.22837859392166138,
'Neutral': 0.5432428121566772,
'Positive': 0.22837859392166138},
'sentiment': 'Neutral',
'start': 0},
{'aspect': '가격',
'confidence': 0.46728911995887756,
'end': 13,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.46728911995887756,
'probability': {'Negative': 0.2663554400205612,
'Neutral': 0.46728911995887756,
'Positive': 0.2663554400205612},
'sentiment': 'Neutral',
'start': 10}],
'positions': [[0, 2], [10, 13]],
'sentiments': ['Neutral', 'Neutral'],
'text': '음식은 맛있었지만, 가격이 너무 비쌌어요.'},
{'aspects': ['الخ', 'دمة', 'الموق', 'ع'],
'confidence': [0.5339547991752625, 0.5055423378944397, 0.44124436378479004, 0.4563024640083313],
'details': [{'aspect': 'الخ',
'confidence': 0.5339547991752625,
'end': 3,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5339547991752625,
'probability': {'Negative': 0.23302260041236877,
'Neutral': 0.5339547991752625,
'Positive': 0.23302260041236877},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'دمة',
'confidence': 0.5055423378944397,
'end': 6,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.5055423378944397,
'probability': {'Negative': 0.24722883105278015,
'Neutral': 0.24722883105278015,
'Positive': 0.5055423378944397},
'sentiment': 'Positive',
'start': 3},
{'aspect': 'الموق',
'confidence': 0.44124436378479004,
'end': 24,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.44124436378479004,
'probability': {'Negative': 0.279377818107605,
'Neutral': 0.44124436378479004,
'Positive': 0.279377818107605},
'sentiment': 'Neutral',
'start': 18},
{'aspect': 'ع',
'confidence': 0.4563024640083313,
'end': 25,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.4563024640083313,
'probability': {'Negative': 0.4563024640083313,
'Neutral': 0.27184876799583435,
'Positive': 0.27184876799583435},
'sentiment': 'Negative',
'start': 24}],
'positions': [[0, 3], [3, 6], [18, 24], [24, 25]],
'sentiments': ['Neutral', 'Positive', 'Neutral', 'Negative'],
'text': 'الخدمة ممتازة، لكن الموقع صعب الوصول إليه.'},
{'aspects': ['कैमरा', 'बैट', 'री', 'लाइफ'],
'confidence': [0.45512592792510986, 0.47939613461494446, 0.435901015996933, 0.46086522936820984],
'details': [{'aspect': 'कैमरा',
'confidence': 0.45512592792510986,
'end': 13,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.45512592792510986,
'probability': {'Negative': 0.27243703603744507,
'Neutral': 0.45512592792510986,
'Positive': 0.27243703603744507},
'sentiment': 'Neutral',
'start': 7},
{'aspect': 'बैट',
'confidence': 0.47939613461494446,
'end': 34,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.47939613461494446,
'probability': {'Negative': 0.26030193269252777,
'Neutral': 0.47939613461494446,
'Positive': 0.26030193269252777},
'sentiment': 'Neutral',
'start': 30},
{'aspect': 'री',
'confidence': 0.435901015996933,
'end': 36,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.435901015996933,
'probability': {'Negative': 0.435901015996933,
'Neutral': 0.2820494920015335,
'Positive': 0.2820494920015335},
'sentiment': 'Negative',
'start': 34},
{'aspect': 'लाइफ',
'confidence': 0.46086522936820984,
'end': 41,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.46086522936820984,
'probability': {'Negative': 0.2695673853158951,
'Neutral': 0.46086522936820984,
'Positive': 0.2695673853158951},
'sentiment': 'Neutral',
'start': 36}],
'positions': [[7, 13], [30, 34], [34, 36], [36, 41]],
'sentiments': ['Neutral', 'Neutral', 'Negative', 'Neutral'],
'text': 'फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।'},
{'aspects': ['locatie', 'personeel'],
'confidence': [0.4961163103580475, 0.4840226173400879],
'details': [{'aspect': 'locatie',
'confidence': 0.4961163103580475,
'end': 10,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.4961163103580475,
'probability': {'Negative': 0.25194184482097626,
'Neutral': 0.25194184482097626,
'Positive': 0.4961163103580475},
'sentiment': 'Positive',
'start': 2},
{'aspect': 'personeel',
'confidence': 0.4840226173400879,
'end': 46,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.4840226173400879,
'probability': {'Negative': 0.4840226173400879,
'Neutral': 0.25798869132995605,
'Positive': 0.25798869132995605},
'sentiment': 'Negative',
'start': 36}],
'positions': [[2, 10], [36, 46]],
'sentiments': ['Positive', 'Negative'],
'text': 'De locatie is perfect, alleen is het personeel onvriendelijk.'},
{'aspects': ['Bok', 'handling'],
'confidence': [0.46991148591041565, 0.4475855529308319],
'details': [{'aspect': 'Bok',
'confidence': 0.46991148591041565,
'end': 3,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.46991148591041565,
'probability': {'Negative': 0.2650442570447922,
'Neutral': 0.46991148591041565,
'Positive': 0.2650442570447922},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'handling',
'confidence': 0.4475855529308319,
'end': 33,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.4475855529308319,
'probability': {'Negative': 0.4475855529308319,
'Neutral': 0.27620722353458405,
'Positive': 0.27620722353458405},
'sentiment': 'Negative',
'start': 24}],
'positions': [[0, 3], [24, 33]],
'sentiments': ['Neutral', 'Negative'],
'text': 'Boken är välskriven, men handlingen är förutsägbar.'},
{'aspects': ['Grafika', 'g', 'fabuła'],
'confidence': [0.5523369312286377, 0.38001376390457153, 0.5456185936927795],
'details': [{'aspect': 'Grafika',
'confidence': 0.5523369312286377,
'end': 7,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5523369312286377,
'probability': {'Negative': 0.22383153438568115,
'Neutral': 0.5523369312286377,
'Positive': 0.22383153438568115},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'g',
'confidence': 0.38001376390457153,
'end': 11,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.38001376390457153,
'probability': {'Negative': 0.30999311804771423,
'Neutral': 0.38001376390457153,
'Positive': 0.30999311804771423},
'sentiment': 'Neutral',
'start': 9},
{'aspect': 'fabuła',
'confidence': 0.5456185936927795,
'end': 43,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5456185936927795,
'probability': {'Negative': 0.22719070315361023,
'Neutral': 0.5456185936927795,
'Positive': 0.22719070315361023},
'sentiment': 'Neutral',
'start': 36}],
'positions': [[0, 7], [9, 11], [36, 43]],
'sentiments': ['Neutral', 'Neutral', 'Neutral'],
'text': 'Grafika w grze jest niesamowita, ale fabuła jest nudna.'},
{'aspects': ['kargo'],
'confidence': [0.6405377388000488],
'details': [{'aspect': 'kargo',
'confidence': 0.6405377388000488,
'end': 33,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.6405377388000488,
'probability': {'Negative': 0.6405377388000488,
'Neutral': 0.17973113059997559,
'Positive': 0.17973113059997559},
'sentiment': 'Negative',
'start': 27}],
'positions': [[27, 33]],
'sentiments': ['Negative'],
'text': 'Ürün kaliteli görünüyor ama kargo çok geç geldi.'},
{'aspects': ['Ch', 'lượng âm thanh'],
'confidence': [0.6112579107284546, 0.6159068942070007],
'details': [{'aspect': 'Ch',
'confidence': 0.6112579107284546,
'end': 2,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.6112579107284546,
'probability': {'Negative': 0.1943710446357727,
'Neutral': 0.1943710446357727,
'Positive': 0.6112579107284546},
'sentiment': 'Positive',
'start': 0},
{'aspect': 'lượng âm thanh',
'confidence': 0.6159068942070007,
'end': 19,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.6159068942070007,
'probability': {'Negative': 0.19204655289649963,
'Neutral': 0.19204655289649963,
'Positive': 0.6159068942070007},
'sentiment': 'Positive',
'start': 4}],
'positions': [[0, 2], [4, 19]],
'sentiments': ['Positive', 'Positive'],
'text': 'Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.'},
{'aspects': [],
'confidence': [],
'details': [],
'positions': [],
'sentiments': [],
'text': 'การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน'},
{'aspects': ['τοποθεσία', 'δω', 'μάτιο'],
'confidence': [0.6473245620727539, 0.49225592613220215, 0.4857552945613861],
'details': [{'aspect': 'τοποθεσία',
'confidence': 0.6473245620727539,
'end': 11,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.6473245620727539,
'probability': {'Negative': 0.17633771896362305,
'Neutral': 0.6473245620727539,
'Positive': 0.17633771896362305},
'sentiment': 'Neutral',
'start': 1},
{'aspect': 'δω',
'confidence': 0.49225592613220215,
'end': 40,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.49225592613220215,
'probability': {'Negative': 0.49225592613220215,
'Neutral': 0.2538720369338989,
'Positive': 0.2538720369338989},
'sentiment': 'Negative',
'start': 37},
{'aspect': 'μάτιο',
'confidence': 0.4857552945613861,
'end': 45,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.4857552945613861,
'probability': {'Negative': 0.25712235271930695,
'Neutral': 0.4857552945613861,
'Positive': 0.25712235271930695},
'sentiment': 'Neutral',
'start': 40}],
'positions': [[1, 11], [37, 40], [40, 45]],
'sentiments': ['Neutral', 'Negative', 'Neutral'],
'text': 'Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.'},
{'aspects': ['ה', 'משחק'],
'confidence': [0.4173576831817627, 0.39395496249198914],
'details': [{'aspect': 'ה',
'confidence': 0.4173576831817627,
'end': 1,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.4173576831817627,
'probability': {'Negative': 0.29132115840911865,
'Neutral': 0.29132115840911865,
'Positive': 0.4173576831817627},
'sentiment': 'Positive',
'start': 0},
{'aspect': 'משחק',
'confidence': 0.39395496249198914,
'end': 5,
'extractor_label': 'ASP-Positive',
'extractor_score': 0.39395496249198914,
'probability': {'Negative': 0.30302251875400543,
'Neutral': 0.30302251875400543,
'Positive': 0.39395496249198914},
'sentiment': 'Positive',
'start': 1}],
'positions': [[0, 1], [1, 5]],
'sentiments': ['Positive', 'Positive'],
'text': 'המשחק מהנה, אבל יש בו יותר מדי פרסומות.'},
{'aspects': ['Pons', 'el', 'tetapi'],
'confidence': [0.59271240234375, 0.2814190089702606, 0.562650740146637],
'details': [{'aspect': 'Pons',
'confidence': 0.59271240234375,
'end': 4,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.59271240234375,
'probability': {'Negative': 0.203643798828125,
'Neutral': 0.59271240234375,
'Positive': 0.203643798828125},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'el',
'confidence': 0.2814190089702606,
'end': 6,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.2814190089702606,
'probability': {'Negative': 0.3592904955148697,
'Neutral': 0.2814190089702606,
'Positive': 0.3592904955148697},
'sentiment': 'Neutral',
'start': 4},
{'aspect': 'tetapi',
'confidence': 0.562650740146637,
'end': 24,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.562650740146637,
'probability': {'Negative': 0.21867462992668152,
'Neutral': 0.562650740146637,
'Positive': 0.21867462992668152},
'sentiment': 'Neutral',
'start': 17}],
'positions': [[0, 4], [4, 6], [17, 24]],
'sentiments': ['Neutral', 'Neutral', 'Neutral'],
'text': 'Ponsel ini cepat, tetapi cenderung cepat panas.'},
{'aspects': ['Ohjelma', 'käyttöliittymä'],
'confidence': [0.5031888484954834, 0.48775985836982727],
'details': [{'aspect': 'Ohjelma',
'confidence': 0.5031888484954834,
'end': 7,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5031888484954834,
'probability': {'Negative': 0.2484055757522583,
'Neutral': 0.5031888484954834,
'Positive': 0.2484055757522583},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'käyttöliittymä',
'confidence': 0.48775985836982727,
'end': 40,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.48775985836982727,
'probability': {'Negative': 0.25612007081508636,
'Neutral': 0.48775985836982727,
'Positive': 0.25612007081508636},
'sentiment': 'Neutral',
'start': 25}],
'positions': [[0, 7], [25, 40]],
'sentiments': ['Neutral', 'Neutral'],
'text': 'Ohjelma on tehokas, mutta käyttöliittymä on sekava.'},
{'aspects': ['Maden', 'portion'],
'confidence': [0.4489361047744751, 0.544648289680481],
'details': [{'aspect': 'Maden',
'confidence': 0.4489361047744751,
'end': 5,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.4489361047744751,
'probability': {'Negative': 0.27553194761276245,
'Neutral': 0.4489361047744751,
'Positive': 0.27553194761276245},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'portion',
'confidence': 0.544648289680481,
'end': 29,
'extractor_label': 'ASP-Negative',
'extractor_score': 0.544648289680481,
'probability': {'Negative': 0.544648289680481,
'Neutral': 0.22767585515975952,
'Positive': 0.22767585515975952},
'sentiment': 'Negative',
'start': 21}],
'positions': [[0, 5], [21, 29]],
'sentiments': ['Neutral', 'Negative'],
'text': 'Maden var lækker, men portionerne var for små.'},
{'aspects': ['Počítač', 'software'],
'confidence': [0.507230281829834, 0.5066105723381042],
'details': [{'aspect': 'Počítač',
'confidence': 0.507230281829834,
'end': 7,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.507230281829834,
'probability': {'Negative': 0.246384859085083,
'Neutral': 0.507230281829834,
'Positive': 0.246384859085083},
'sentiment': 'Neutral',
'start': 0},
{'aspect': 'software',
'confidence': 0.5066105723381042,
'end': 31,
'extractor_label': 'ASP-Neutral',
'extractor_score': 0.5066105723381042,
'probability': {'Negative': 0.24669471383094788,
'Neutral': 0.5066105723381042,
'Positive': 0.24669471383094788},
'sentiment': 'Neutral',
'start': 22}],
'positions': [[0, 7], [22, 31]],
'sentiments': ['Neutral', 'Neutral'],
'text': 'Počítač je rychlý, ale software je zastaralý.'}]
"""
|