File size: 71,929 Bytes
e6e5dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
# -*- coding: utf-8 -*-
# File: end2end_absa.py
# Time: 18:44 12/08/2025
# Author: YANG, HENG <[email protected]> (杨恒)
# Website: https://yangheng95.github.io
# GitHub: https://github.com/yangheng95
# HuggingFace: https://huggingface.co/yangheng
# Google Scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
# Copyright (C) 2019-2025. All rights reserved.

# ====== New/Replacement imports ======
from typing import List, Dict, Any

from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
    AutoModelForTokenClassification,
    pipeline
)

import torch
import re
from pprint import pprint

# Device configuration
device = 0 if torch.cuda.is_available() else -1

# Model configurations
ASPECT_MODEL_ID = "yangheng/deberta-v3-base-end2end-absa"
SENTI_MODEL_ID = "yangheng/deberta-v3-base-absa-v1.1"

# When classifier's highest confidence < this threshold, optionally use extractor's ASP-XXX as fallback
USE_EXTRACTOR_SENTI_AS_FALLBACK = True
FALLBACK_CONFIDENCE_THRESHOLD = 0.8

# Maximum length and truncation strategy to avoid truncation warnings
TRUNCATION = True
MAX_LENGTH = 512  # Adjust based on GPU memory and text length
BATCH_SIZE = 16  # Batch size, adjust based on resources

# ================================

# Initialize tokenizer and model for aspect extraction
try:
    tok_asp = AutoTokenizer.from_pretrained(SENTI_MODEL_ID, use_fast=True)
    mdl_asp = AutoModelForTokenClassification.from_pretrained(ASPECT_MODEL_ID)

    aspect_extractor = pipeline(
        task="token-classification",
        model=mdl_asp,
        tokenizer=tok_asp,
        aggregation_strategy="simple",
        device=device,
    )
except Exception as e:
    print(f"Error loading aspect extraction models: {e}")
    raise

# Initialize sentiment classifier (text_pair mode)
try:
    sent_classifier = pipeline(
        task="text-classification",
        model=SENTI_MODEL_ID,
        device=device,
        return_all_scores=True,  # Return all class scores for confidence
        function_to_apply="softmax",
        top_k=None
    )
except Exception as e:
    print(f"Error loading sentiment classification model: {e}")
    raise


# --- Defensive fallback: when offset is missing, use substring search ---

def _clean_aspect(s: str) -> str:
    """Clean aspect string by removing leading/trailing punctuation and whitespace."""
    if not s:
        return ""
    return re.sub(r'^[\s\.,;:!?\(\)\[\]\{\}"\']+|[\s\.,;:!?\(\)\[\]\{\}"\']+$', "", s).strip()


def _locate_span(text: str, phrase: str):
    """Locate the span of a phrase in text, with case-insensitive fallback."""
    if not phrase:
        return None

    # Try exact match first
    pat = re.escape(phrase)
    m = re.search(pat, text)
    if m:
        return m.start(), m.end()

    # Try case-insensitive match
    m = re.search(pat, text, flags=re.IGNORECASE)
    if m:
        return m.start(), m.end()

    return None


def extract_aspects_for_text(text: str) -> List[Dict[str, Any]]:
    """

    Extract aspects from a single text using the aspect extraction model.



    Args:

        text: Input text to extract aspects from



    Returns:

        List of aspect dictionaries with position and metadata

    """
    if not text.strip():
        return []

    try:
        ents = aspect_extractor(text)
        print(f"Raw entities extracted: {ents}")  # Debug output
    except Exception as e:
        print(f"Error in aspect extraction for text '{text[:50]}...': {e}")
        return []

    aspects = []
    seen = set()

    for ent in ents:
        label = (ent.get("entity_group") or "").lower()
        print(f"Processing entity: {ent}, label: {label}")  # Debug output

        # More flexible label matching
        if not any(keyword in label for keyword in ["asp", "aspect", "b-", "i-"]):
            print(f"Skipping entity with label: {label}")
            continue

        word = _clean_aspect(ent.get("word", ""))
        if not word:  # Skip empty aspects
            print(f"Skipping empty aspect")
            continue

        start = ent.get("start")
        end = ent.get("end")

        # Fallback: when offset is missing, relocate using substring search
        if start is None or end is None:
            loc = _locate_span(text, word)
            if loc:
                start, end = loc
            else:
                # Skip if position cannot be determined to avoid dirty data
                print(f"Could not locate aspect '{word}' in text")
                continue

        # Avoid duplicates
        key = (word.lower(), int(start), int(end))
        if key in seen:
            continue
        seen.add(key)

        aspect_dict = {
            "aspect": word,
            "start": int(start),
            "end": int(end),
            "extractor_label": ent.get("entity_group", ""),
            "extractor_score": float(ent.get("score", 0.0)),
        }
        aspects.append(aspect_dict)
        print(f"Added aspect: {aspect_dict}")  # Debug output

    print(f"Final aspects for text: {aspects}")  # Debug output
    return aspects


def classify_aspects(text: str, aspects: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    """

    Classify sentiment polarity for each (text, aspect) pair.

    Since the aspect extractor already provides sentiment labels (ASP-Positive, etc.),

    we can use those directly or optionally run additional classification.



    Args:

        text: Original text

        aspects: List of aspect dictionaries



    Returns:

        List of aspects enriched with sentiment and confidence information

    """
    if not aspects:
        return []

    enriched = []
    for asp in aspects:
        # Extract sentiment from the extractor label (ASP-Positive -> Positive)
        extractor_label = asp.get("extractor_label", "")
        extractor_confidence = asp.get("extractor_score", 0.0)

        # Default values
        sentiment = "Neutral"
        confidence = extractor_confidence
        prob_map = {"Positive": 0.33, "Negative": 0.33, "Neutral": 0.33}

        # Parse sentiment from extractor label
        if "-" in extractor_label:
            _, maybe_sentiment = extractor_label.split("-", 1)
            if maybe_sentiment.capitalize() in ("Positive", "Negative", "Neutral"):
                sentiment = maybe_sentiment.capitalize()
                # Create probability distribution with extractor confidence
                prob_map = {
                    "Positive": confidence if sentiment == "Positive" else (1 - confidence) / 2,
                    "Negative": confidence if sentiment == "Negative" else (1 - confidence) / 2,
                    "Neutral": confidence if sentiment == "Neutral" else (1 - confidence) / 2
                }

        # Optionally run additional sentiment classification if confidence is low
        if confidence < FALLBACK_CONFIDENCE_THRESHOLD:
            try:
                # Try additional classification
                combined_input = f"{text} [SEP] {asp['aspect']}"

                result = sent_classifier(
                    combined_input,
                    truncation=TRUNCATION,
                    max_length=MAX_LENGTH
                )

                if result and isinstance(result, list) and len(result) > 0:
                    if isinstance(result[0], dict):
                        best = max(result, key=lambda d: d.get("score", 0))
                        classifier_sentiment = best.get("label", sentiment)
                        classifier_confidence = float(best.get("score", confidence))

                        # Use classifier result if it has higher confidence
                        if classifier_confidence > confidence:
                            sentiment = classifier_sentiment
                            confidence = classifier_confidence
                            prob_map = {d.get("label", "Neutral"): float(d.get("score", 0)) for d in result}

            except Exception as e:
                print(f"Error in additional classification for aspect '{asp['aspect']}': {e}")
                # Keep the extractor's result

        enriched.append({
            **asp,
            "sentiment": sentiment,
            "confidence": confidence,
            "probability": prob_map
        })

    return enriched


def absa(texts: List[str]) -> List[Dict[str, Any]]:
    """

    Main entry point: Extract aspects from each text and classify their sentiment polarity.



    Args:

        texts: List of input texts



    Returns:

        List of structured results for each text

    """
    if not texts:
        return []

    results = []
    for i, text in enumerate(texts):
        if not isinstance(text, str):
            print(f"Warning: Text at index {i} is not a string, skipping")
            continue

        try:
            aspects = extract_aspects_for_text(text)
            aspects = classify_aspects(text, aspects)

            results.append({
                "text": text,
                "aspects": [a["aspect"] for a in aspects],
                "positions": [[a["start"], a["end"]] for a in aspects],
                "sentiments": [a["sentiment"] for a in aspects],
                "confidence": [a["confidence"] for a in aspects],
                "details": aspects  # Preserve rich original information
            })
        except Exception as e:
            print(f"Error processing text at index {i}: {e}")
            results.append({
                "text": text,
                "aspects": [],
                "positions": [],
                "sentiments": [],
                "confidence": [],
                "details": []
            })

    return results


if __name__ == "__main__":
    # Test samples in multiple languages
    samples = [
        "The user interface is brilliant, but the documentation is a total mess.",
        # English
        "这家餐厅的牛排很好吃,但是服务很慢。",
        # Chinese (Simplified): The steak at this restaurant is delicious, but the service is slow.
        "La batería es malísima, aunque la cámara está muy bien.",
        # Spanish: The battery is terrible, although the camera is very good.
        "Le film était captivant, mais la fin était décevante.",
        # French: The movie was captivating, but the ending was disappointing.
        "Das Auto ist sehr sparsam, aber die Sitze sind unbequem.",
        # German: The car is very economical, but the seats are uncomfortable.
        "Il design è elegante, però il software è pieno di bug.",
        # Italian: The design is elegant, but the software is full of bugs.
        "O hotel tem uma vista incrível, mas o café da manhã é fraco.",
        # Portuguese: The hotel has an incredible view, but the breakfast is weak.
        "Книга очень интересная, но перевод оставляет желать лучшего.",
        # Russian: The book is very interesting, but the translation leaves much to be desired.
        "このアプリは便利だけど、バッテリーの消費が激しい。",
        # Japanese: This app is useful, but it drains the battery quickly.
        "음식은 맛있었지만, 가격이 너무 비쌌어요.",
        # Korean: The food was delicious, but the price was too expensive.
        "الخدمة ممتازة، لكن الموقع صعب الوصول إليه.",
        # Arabic: The service is excellent, but the location is hard to reach.
        "फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।",
        # Hindi: The phone's camera is great, but the battery life is bad.
        "De locatie is perfect, alleen is het personeel onvriendelijk.",
        # Dutch: The location is perfect, however the staff is unfriendly.
        "Boken är välskriven, men handlingen är förutsägbar.",
        # Swedish: The book is well-written, but the plot is predictable.
        "Grafika w grze jest niesamowita, ale fabuła jest nudna.",
        # Polish: The graphics in the game are amazing, but the story is boring.
        "Ürün kaliteli görünüyor ama kargo çok geç geldi.",
        # Turkish: The product looks high quality, but the shipping was very late.
        "Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.",
        # Vietnamese: The sound quality is good, however the headphones are not very comfortable.
        "การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน",
        # Thai: The acting was great, but the script was rather weak.
        "Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.",
        # Greek: The location is fantastic, but the room was very small.
        "המשחק מהנה, אבל יש בו יותר מדי פרסומות.",
        # Hebrew: The game is fun, but it has too many ads.
        "Ponsel ini cepat, tetapi cenderung cepat panas.",
        # Indonesian: This phone is fast, but it tends to get hot quickly.
        "Ohjelma on tehokas, mutta käyttöliittymä on sekava.",
        # Finnish: The program is powerful, but the user interface is confusing.
        "Maden var lækker, men portionerne var for små.",
        # Danish: The food was delicious, but the portions were too small.
        "Počítač je rychlý, ale software je zastaralý.",
        # Czech: The computer is fast, but the software is outdated.
    ]


    print("Running ABSA analysis...")
    try:
        results = absa(samples)
        print("\nResults:")
        pprint(results, width=120)
    except Exception as e:
        print(f"Error running ABSA: {e}")


# >>>> # Example output:
"""

Running ABSA analysis...

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, label: asp-neutral

Added aspect: {'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}, label: asp-negative

Added aspect: {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}

Final aspects for text: [{'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}, {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}]

Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}]

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, label: asp-positive

Added aspect: {'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}, label: asp-negative

Added aspect: {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}

Final aspects for text: [{'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}, {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, label: asp-neutral

Added aspect: {'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}, label: asp-neutral

Added aspect: {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}

Final aspects for text: [{'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}, {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}]

Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}]

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, label: asp-positive

Added aspect: {'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}, label: asp-negative

Added aspect: {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}

Final aspects for text: [{'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}, {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, label: asp-neutral

Added aspect: {'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}, label: asp-neutral

Added aspect: {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}

Final aspects for text: [{'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}, {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, label: asp-neutral

Added aspect: {'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}, label: asp-neutral

Added aspect: {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}

Final aspects for text: [{'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}, {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}]

You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset

Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}]

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}, label: asp-negative

Added aspect: {'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}

Final aspects for text: [{'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, label: asp-neutral

Added aspect: {'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}, label: asp-neutral

Added aspect: {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}

Final aspects for text: [{'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}, {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}]

Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}]

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}, label: asp-negative

Added aspect: {'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}

Final aspects for text: [{'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}]

Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}]

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, label: asp-positive

Skipping empty aspect

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, label: asp-neutral

Added aspect: {'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}, label: asp-neutral

Added aspect: {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}

Final aspects for text: [{'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}, {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, label: asp-neutral

Added aspect: {'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, label: asp-positive

Added aspect: {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, label: asp-neutral

Added aspect: {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}, label: asp-negative

Added aspect: {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}

Final aspects for text: [{'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}, {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}, {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}, {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, label: asp-neutral

Added aspect: {'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, label: asp-neutral

Added aspect: {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, label: asp-negative

Added aspect: {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}, label: asp-neutral

Added aspect: {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}

Final aspects for text: [{'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}, {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}, {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}, {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}]

Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}]

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, label: asp-positive

Added aspect: {'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}, label: asp-negative

Added aspect: {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}

Final aspects for text: [{'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}, {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, label: asp-neutral

Added aspect: {'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}, label: asp-negative

Added aspect: {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}

Final aspects for text: [{'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}, {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, label: asp-neutral

Added aspect: {'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, label: asp-neutral

Added aspect: {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}, label: asp-neutral

Added aspect: {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}

Final aspects for text: [{'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}, {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}, {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}]

Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}]

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}, label: asp-negative

Added aspect: {'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}

Final aspects for text: [{'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}]

Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}]

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, label: asp-positive

Added aspect: {'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}, label: asp-positive

Added aspect: {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}

Final aspects for text: [{'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}, {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}]

Raw entities extracted: []

Final aspects for text: []

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, label: asp-neutral

Added aspect: {'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, label: asp-negative

Added aspect: {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}, label: asp-neutral

Added aspect: {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}

Final aspects for text: [{'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}, {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}, {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}]

Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}]

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, label: asp-positive

Added aspect: {'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}

Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}, label: asp-positive

Added aspect: {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}

Final aspects for text: [{'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}, {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, label: asp-neutral

Added aspect: {'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, label: asp-neutral

Added aspect: {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}, label: asp-neutral

Added aspect: {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}

Final aspects for text: [{'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}, {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}, {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, label: asp-neutral

Added aspect: {'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}, label: asp-neutral

Added aspect: {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}

Final aspects for text: [{'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}, {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, label: asp-neutral

Added aspect: {'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}

Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}, label: asp-negative

Added aspect: {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}

Final aspects for text: [{'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}, {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}]

Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}]

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, label: asp-neutral

Added aspect: {'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}

Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}, label: asp-neutral

Added aspect: {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}

Final aspects for text: [{'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}, {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}]



Results:

[{'aspects': ['user interface', 'documentation'],

  'confidence': [0.517541766166687, 0.5204463601112366],

  'details': [{'aspect': 'user interface',

               'confidence': 0.517541766166687,

               'end': 18,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.517541766166687,

               'probability': {'Negative': 0.2412291169166565,

                               'Neutral': 0.517541766166687,

                               'Positive': 0.2412291169166565},

               'sentiment': 'Neutral',

               'start': 3},

              {'aspect': 'documentation',

               'confidence': 0.5204463601112366,

               'end': 54,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.5204463601112366,

               'probability': {'Negative': 0.5204463601112366,

                               'Neutral': 0.2397768199443817,

                               'Positive': 0.2397768199443817},

               'sentiment': 'Negative',

               'start': 40}],

  'positions': [[3, 18], [40, 54]],

  'sentiments': ['Neutral', 'Negative'],

  'text': 'The user interface is brilliant, but the documentation is a total mess.'},

 {'aspects': ['牛排', '服务'],

  'confidence': [0.5346122980117798, 0.5622819066047668],

  'details': [{'aspect': '牛排',

               'confidence': 0.5346122980117798,

               'end': 7,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.5346122980117798,

               'probability': {'Negative': 0.2326938509941101,

                               'Neutral': 0.2326938509941101,

                               'Positive': 0.5346122980117798},

               'sentiment': 'Positive',

               'start': 5},

              {'aspect': '服务',

               'confidence': 0.5622819066047668,

               'end': 15,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.5622819066047668,

               'probability': {'Negative': 0.5622819066047668,

                               'Neutral': 0.21885904669761658,

                               'Positive': 0.21885904669761658},

               'sentiment': 'Negative',

               'start': 13}],

  'positions': [[5, 7], [13, 15]],

  'sentiments': ['Positive', 'Negative'],

  'text': '这家餐厅的牛排很好吃,但是服务很慢。'},

 {'aspects': ['batería', 'cámara'],

  'confidence': [0.43364980816841125, 0.44364821910858154],

  'details': [{'aspect': 'batería',

               'confidence': 0.43364980816841125,

               'end': 10,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.43364980816841125,

               'probability': {'Negative': 0.2831750959157944,

                               'Neutral': 0.43364980816841125,

                               'Positive': 0.2831750959157944},

               'sentiment': 'Neutral',

               'start': 2},

              {'aspect': 'cámara',

               'confidence': 0.44364821910858154,

               'end': 40,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.44364821910858154,

               'probability': {'Negative': 0.27817589044570923,

                               'Neutral': 0.44364821910858154,

                               'Positive': 0.27817589044570923},

               'sentiment': 'Neutral',

               'start': 33}],

  'positions': [[2, 10], [33, 40]],

  'sentiments': ['Neutral', 'Neutral'],

  'text': 'La batería es malísima, aunque la cámara está muy bien.'},

 {'aspects': ['film', 'fin'],

  'confidence': [0.6539797782897949, 0.41829001903533936],

  'details': [{'aspect': 'film',

               'confidence': 0.6539797782897949,

               'end': 7,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.6539797782897949,

               'probability': {'Negative': 0.17301011085510254,

                               'Neutral': 0.17301011085510254,

                               'Positive': 0.6539797782897949},

               'sentiment': 'Positive',

               'start': 2},

              {'aspect': 'fin',

               'confidence': 0.41829001903533936,

               'end': 36,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.41829001903533936,

               'probability': {'Negative': 0.41829001903533936,

                               'Neutral': 0.2908549904823303,

                               'Positive': 0.2908549904823303},

               'sentiment': 'Negative',

               'start': 32}],

  'positions': [[2, 7], [32, 36]],

  'sentiments': ['Positive', 'Negative'],

  'text': 'Le film était captivant, mais la fin était décevante.'},

 {'aspects': ['Auto', 'Sitze'],

  'confidence': [0.5750167965888977, 0.4986541271209717],

  'details': [{'aspect': 'Auto',

               'confidence': 0.5750167965888977,

               'end': 8,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5750167965888977,

               'probability': {'Negative': 0.21249160170555115,

                               'Neutral': 0.5750167965888977,

                               'Positive': 0.21249160170555115},

               'sentiment': 'Neutral',

               'start': 3},

              {'aspect': 'Sitze',

               'confidence': 0.4986541271209717,

               'end': 41,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.4986541271209717,

               'probability': {'Negative': 0.25067293643951416,

                               'Neutral': 0.4986541271209717,

                               'Positive': 0.25067293643951416},

               'sentiment': 'Neutral',

               'start': 35}],

  'positions': [[3, 8], [35, 41]],

  'sentiments': ['Neutral', 'Neutral'],

  'text': 'Das Auto ist sehr sparsam, aber die Sitze sind unbequem.'},

 {'aspects': ['design', 'software'],

  'confidence': [0.6298937201499939, 0.6058070063591003],

  'details': [{'aspect': 'design',

               'confidence': 0.6298937201499939,

               'end': 9,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.6298937201499939,

               'probability': {'Negative': 0.18505313992500305,

                               'Neutral': 0.6298937201499939,

                               'Positive': 0.18505313992500305},

               'sentiment': 'Neutral',

               'start': 2},

              {'aspect': 'software',

               'confidence': 0.6058070063591003,

               'end': 38,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.6058070063591003,

               'probability': {'Negative': 0.19709649682044983,

                               'Neutral': 0.6058070063591003,

                               'Positive': 0.19709649682044983},

               'sentiment': 'Neutral',

               'start': 29}],

  'positions': [[2, 9], [29, 38]],

  'sentiments': ['Neutral', 'Neutral'],

  'text': 'Il design è elegante, però il software è pieno di bug.'},

 {'aspects': ['café'],

  'confidence': [0.56500643491745],

  'details': [{'aspect': 'café',

               'confidence': 0.56500643491745,

               'end': 42,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.56500643491745,

               'probability': {'Negative': 0.56500643491745,

                               'Neutral': 0.21749678254127502,

                               'Positive': 0.21749678254127502},

               'sentiment': 'Negative',

               'start': 37}],

  'positions': [[37, 42]],

  'sentiments': ['Negative'],

  'text': 'O hotel tem uma vista incrível, mas o café da manhã é fraco.'},

 {'aspects': ['Кни', 'пере'],

  'confidence': [0.42165103554725647, 0.5683889389038086],

  'details': [{'aspect': 'Кни',

               'confidence': 0.42165103554725647,

               'end': 3,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.42165103554725647,

               'probability': {'Negative': 0.28917448222637177,

                               'Neutral': 0.42165103554725647,

                               'Positive': 0.28917448222637177},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'пере',

               'confidence': 0.5683889389038086,

               'end': 31,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5683889389038086,

               'probability': {'Negative': 0.2158055305480957,

                               'Neutral': 0.5683889389038086,

                               'Positive': 0.2158055305480957},

               'sentiment': 'Neutral',

               'start': 26}],

  'positions': [[0, 3], [26, 31]],

  'sentiments': ['Neutral', 'Neutral'],

  'text': 'Книга очень интересная, но перевод оставляет желать лучшего.'},

 {'aspects': ['バッテリー'],

  'confidence': [0.5808011293411255],

  'details': [{'aspect': 'バッテリー',

               'confidence': 0.5808011293411255,

               'end': 17,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.5808011293411255,

               'probability': {'Negative': 0.5808011293411255,

                               'Neutral': 0.20959943532943726,

                               'Positive': 0.20959943532943726},

               'sentiment': 'Negative',

               'start': 12}],

  'positions': [[12, 17]],

  'sentiments': ['Negative'],

  'text': 'このアプリは便利だけど、バッテリーの消費が激しい。'},

 {'aspects': ['음식', '가격'],

  'confidence': [0.5432428121566772, 0.46728911995887756],

  'details': [{'aspect': '음식',

               'confidence': 0.5432428121566772,

               'end': 2,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5432428121566772,

               'probability': {'Negative': 0.22837859392166138,

                               'Neutral': 0.5432428121566772,

                               'Positive': 0.22837859392166138},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': '가격',

               'confidence': 0.46728911995887756,

               'end': 13,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.46728911995887756,

               'probability': {'Negative': 0.2663554400205612,

                               'Neutral': 0.46728911995887756,

                               'Positive': 0.2663554400205612},

               'sentiment': 'Neutral',

               'start': 10}],

  'positions': [[0, 2], [10, 13]],

  'sentiments': ['Neutral', 'Neutral'],

  'text': '음식은 맛있었지만, 가격이 너무 비쌌어요.'},

 {'aspects': ['الخ', 'دمة', 'الموق', 'ع'],

  'confidence': [0.5339547991752625, 0.5055423378944397, 0.44124436378479004, 0.4563024640083313],

  'details': [{'aspect': 'الخ',

               'confidence': 0.5339547991752625,

               'end': 3,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5339547991752625,

               'probability': {'Negative': 0.23302260041236877,

                               'Neutral': 0.5339547991752625,

                               'Positive': 0.23302260041236877},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'دمة',

               'confidence': 0.5055423378944397,

               'end': 6,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.5055423378944397,

               'probability': {'Negative': 0.24722883105278015,

                               'Neutral': 0.24722883105278015,

                               'Positive': 0.5055423378944397},

               'sentiment': 'Positive',

               'start': 3},

              {'aspect': 'الموق',

               'confidence': 0.44124436378479004,

               'end': 24,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.44124436378479004,

               'probability': {'Negative': 0.279377818107605,

                               'Neutral': 0.44124436378479004,

                               'Positive': 0.279377818107605},

               'sentiment': 'Neutral',

               'start': 18},

              {'aspect': 'ع',

               'confidence': 0.4563024640083313,

               'end': 25,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.4563024640083313,

               'probability': {'Negative': 0.4563024640083313,

                               'Neutral': 0.27184876799583435,

                               'Positive': 0.27184876799583435},

               'sentiment': 'Negative',

               'start': 24}],

  'positions': [[0, 3], [3, 6], [18, 24], [24, 25]],

  'sentiments': ['Neutral', 'Positive', 'Neutral', 'Negative'],

  'text': 'الخدمة ممتازة، لكن الموقع صعب الوصول إليه.'},

 {'aspects': ['कैमरा', 'बैट', 'री', 'लाइफ'],

  'confidence': [0.45512592792510986, 0.47939613461494446, 0.435901015996933, 0.46086522936820984],

  'details': [{'aspect': 'कैमरा',

               'confidence': 0.45512592792510986,

               'end': 13,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.45512592792510986,

               'probability': {'Negative': 0.27243703603744507,

                               'Neutral': 0.45512592792510986,

                               'Positive': 0.27243703603744507},

               'sentiment': 'Neutral',

               'start': 7},

              {'aspect': 'बैट',

               'confidence': 0.47939613461494446,

               'end': 34,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.47939613461494446,

               'probability': {'Negative': 0.26030193269252777,

                               'Neutral': 0.47939613461494446,

                               'Positive': 0.26030193269252777},

               'sentiment': 'Neutral',

               'start': 30},

              {'aspect': 'री',

               'confidence': 0.435901015996933,

               'end': 36,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.435901015996933,

               'probability': {'Negative': 0.435901015996933,

                               'Neutral': 0.2820494920015335,

                               'Positive': 0.2820494920015335},

               'sentiment': 'Negative',

               'start': 34},

              {'aspect': 'लाइफ',

               'confidence': 0.46086522936820984,

               'end': 41,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.46086522936820984,

               'probability': {'Negative': 0.2695673853158951,

                               'Neutral': 0.46086522936820984,

                               'Positive': 0.2695673853158951},

               'sentiment': 'Neutral',

               'start': 36}],

  'positions': [[7, 13], [30, 34], [34, 36], [36, 41]],

  'sentiments': ['Neutral', 'Neutral', 'Negative', 'Neutral'],

  'text': 'फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।'},

 {'aspects': ['locatie', 'personeel'],

  'confidence': [0.4961163103580475, 0.4840226173400879],

  'details': [{'aspect': 'locatie',

               'confidence': 0.4961163103580475,

               'end': 10,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.4961163103580475,

               'probability': {'Negative': 0.25194184482097626,

                               'Neutral': 0.25194184482097626,

                               'Positive': 0.4961163103580475},

               'sentiment': 'Positive',

               'start': 2},

              {'aspect': 'personeel',

               'confidence': 0.4840226173400879,

               'end': 46,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.4840226173400879,

               'probability': {'Negative': 0.4840226173400879,

                               'Neutral': 0.25798869132995605,

                               'Positive': 0.25798869132995605},

               'sentiment': 'Negative',

               'start': 36}],

  'positions': [[2, 10], [36, 46]],

  'sentiments': ['Positive', 'Negative'],

  'text': 'De locatie is perfect, alleen is het personeel onvriendelijk.'},

 {'aspects': ['Bok', 'handling'],

  'confidence': [0.46991148591041565, 0.4475855529308319],

  'details': [{'aspect': 'Bok',

               'confidence': 0.46991148591041565,

               'end': 3,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.46991148591041565,

               'probability': {'Negative': 0.2650442570447922,

                               'Neutral': 0.46991148591041565,

                               'Positive': 0.2650442570447922},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'handling',

               'confidence': 0.4475855529308319,

               'end': 33,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.4475855529308319,

               'probability': {'Negative': 0.4475855529308319,

                               'Neutral': 0.27620722353458405,

                               'Positive': 0.27620722353458405},

               'sentiment': 'Negative',

               'start': 24}],

  'positions': [[0, 3], [24, 33]],

  'sentiments': ['Neutral', 'Negative'],

  'text': 'Boken är välskriven, men handlingen är förutsägbar.'},

 {'aspects': ['Grafika', 'g', 'fabuła'],

  'confidence': [0.5523369312286377, 0.38001376390457153, 0.5456185936927795],

  'details': [{'aspect': 'Grafika',

               'confidence': 0.5523369312286377,

               'end': 7,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5523369312286377,

               'probability': {'Negative': 0.22383153438568115,

                               'Neutral': 0.5523369312286377,

                               'Positive': 0.22383153438568115},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'g',

               'confidence': 0.38001376390457153,

               'end': 11,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.38001376390457153,

               'probability': {'Negative': 0.30999311804771423,

                               'Neutral': 0.38001376390457153,

                               'Positive': 0.30999311804771423},

               'sentiment': 'Neutral',

               'start': 9},

              {'aspect': 'fabuła',

               'confidence': 0.5456185936927795,

               'end': 43,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5456185936927795,

               'probability': {'Negative': 0.22719070315361023,

                               'Neutral': 0.5456185936927795,

                               'Positive': 0.22719070315361023},

               'sentiment': 'Neutral',

               'start': 36}],

  'positions': [[0, 7], [9, 11], [36, 43]],

  'sentiments': ['Neutral', 'Neutral', 'Neutral'],

  'text': 'Grafika w grze jest niesamowita, ale fabuła jest nudna.'},

 {'aspects': ['kargo'],

  'confidence': [0.6405377388000488],

  'details': [{'aspect': 'kargo',

               'confidence': 0.6405377388000488,

               'end': 33,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.6405377388000488,

               'probability': {'Negative': 0.6405377388000488,

                               'Neutral': 0.17973113059997559,

                               'Positive': 0.17973113059997559},

               'sentiment': 'Negative',

               'start': 27}],

  'positions': [[27, 33]],

  'sentiments': ['Negative'],

  'text': 'Ürün kaliteli görünüyor ama kargo çok geç geldi.'},

 {'aspects': ['Ch', 'lượng âm thanh'],

  'confidence': [0.6112579107284546, 0.6159068942070007],

  'details': [{'aspect': 'Ch',

               'confidence': 0.6112579107284546,

               'end': 2,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.6112579107284546,

               'probability': {'Negative': 0.1943710446357727,

                               'Neutral': 0.1943710446357727,

                               'Positive': 0.6112579107284546},

               'sentiment': 'Positive',

               'start': 0},

              {'aspect': 'lượng âm thanh',

               'confidence': 0.6159068942070007,

               'end': 19,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.6159068942070007,

               'probability': {'Negative': 0.19204655289649963,

                               'Neutral': 0.19204655289649963,

                               'Positive': 0.6159068942070007},

               'sentiment': 'Positive',

               'start': 4}],

  'positions': [[0, 2], [4, 19]],

  'sentiments': ['Positive', 'Positive'],

  'text': 'Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.'},

 {'aspects': [],

  'confidence': [],

  'details': [],

  'positions': [],

  'sentiments': [],

  'text': 'การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน'},

 {'aspects': ['τοποθεσία', 'δω', 'μάτιο'],

  'confidence': [0.6473245620727539, 0.49225592613220215, 0.4857552945613861],

  'details': [{'aspect': 'τοποθεσία',

               'confidence': 0.6473245620727539,

               'end': 11,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.6473245620727539,

               'probability': {'Negative': 0.17633771896362305,

                               'Neutral': 0.6473245620727539,

                               'Positive': 0.17633771896362305},

               'sentiment': 'Neutral',

               'start': 1},

              {'aspect': 'δω',

               'confidence': 0.49225592613220215,

               'end': 40,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.49225592613220215,

               'probability': {'Negative': 0.49225592613220215,

                               'Neutral': 0.2538720369338989,

                               'Positive': 0.2538720369338989},

               'sentiment': 'Negative',

               'start': 37},

              {'aspect': 'μάτιο',

               'confidence': 0.4857552945613861,

               'end': 45,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.4857552945613861,

               'probability': {'Negative': 0.25712235271930695,

                               'Neutral': 0.4857552945613861,

                               'Positive': 0.25712235271930695},

               'sentiment': 'Neutral',

               'start': 40}],

  'positions': [[1, 11], [37, 40], [40, 45]],

  'sentiments': ['Neutral', 'Negative', 'Neutral'],

  'text': 'Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.'},

 {'aspects': ['ה', 'משחק'],

  'confidence': [0.4173576831817627, 0.39395496249198914],

  'details': [{'aspect': 'ה',

               'confidence': 0.4173576831817627,

               'end': 1,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.4173576831817627,

               'probability': {'Negative': 0.29132115840911865,

                               'Neutral': 0.29132115840911865,

                               'Positive': 0.4173576831817627},

               'sentiment': 'Positive',

               'start': 0},

              {'aspect': 'משחק',

               'confidence': 0.39395496249198914,

               'end': 5,

               'extractor_label': 'ASP-Positive',

               'extractor_score': 0.39395496249198914,

               'probability': {'Negative': 0.30302251875400543,

                               'Neutral': 0.30302251875400543,

                               'Positive': 0.39395496249198914},

               'sentiment': 'Positive',

               'start': 1}],

  'positions': [[0, 1], [1, 5]],

  'sentiments': ['Positive', 'Positive'],

  'text': 'המשחק מהנה, אבל יש בו יותר מדי פרסומות.'},

 {'aspects': ['Pons', 'el', 'tetapi'],

  'confidence': [0.59271240234375, 0.2814190089702606, 0.562650740146637],

  'details': [{'aspect': 'Pons',

               'confidence': 0.59271240234375,

               'end': 4,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.59271240234375,

               'probability': {'Negative': 0.203643798828125,

                               'Neutral': 0.59271240234375,

                               'Positive': 0.203643798828125},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'el',

               'confidence': 0.2814190089702606,

               'end': 6,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.2814190089702606,

               'probability': {'Negative': 0.3592904955148697,

                               'Neutral': 0.2814190089702606,

                               'Positive': 0.3592904955148697},

               'sentiment': 'Neutral',

               'start': 4},

              {'aspect': 'tetapi',

               'confidence': 0.562650740146637,

               'end': 24,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.562650740146637,

               'probability': {'Negative': 0.21867462992668152,

                               'Neutral': 0.562650740146637,

                               'Positive': 0.21867462992668152},

               'sentiment': 'Neutral',

               'start': 17}],

  'positions': [[0, 4], [4, 6], [17, 24]],

  'sentiments': ['Neutral', 'Neutral', 'Neutral'],

  'text': 'Ponsel ini cepat, tetapi cenderung cepat panas.'},

 {'aspects': ['Ohjelma', 'käyttöliittymä'],

  'confidence': [0.5031888484954834, 0.48775985836982727],

  'details': [{'aspect': 'Ohjelma',

               'confidence': 0.5031888484954834,

               'end': 7,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5031888484954834,

               'probability': {'Negative': 0.2484055757522583,

                               'Neutral': 0.5031888484954834,

                               'Positive': 0.2484055757522583},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'käyttöliittymä',

               'confidence': 0.48775985836982727,

               'end': 40,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.48775985836982727,

               'probability': {'Negative': 0.25612007081508636,

                               'Neutral': 0.48775985836982727,

                               'Positive': 0.25612007081508636},

               'sentiment': 'Neutral',

               'start': 25}],

  'positions': [[0, 7], [25, 40]],

  'sentiments': ['Neutral', 'Neutral'],

  'text': 'Ohjelma on tehokas, mutta käyttöliittymä on sekava.'},

 {'aspects': ['Maden', 'portion'],

  'confidence': [0.4489361047744751, 0.544648289680481],

  'details': [{'aspect': 'Maden',

               'confidence': 0.4489361047744751,

               'end': 5,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.4489361047744751,

               'probability': {'Negative': 0.27553194761276245,

                               'Neutral': 0.4489361047744751,

                               'Positive': 0.27553194761276245},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'portion',

               'confidence': 0.544648289680481,

               'end': 29,

               'extractor_label': 'ASP-Negative',

               'extractor_score': 0.544648289680481,

               'probability': {'Negative': 0.544648289680481,

                               'Neutral': 0.22767585515975952,

                               'Positive': 0.22767585515975952},

               'sentiment': 'Negative',

               'start': 21}],

  'positions': [[0, 5], [21, 29]],

  'sentiments': ['Neutral', 'Negative'],

  'text': 'Maden var lækker, men portionerne var for små.'},

 {'aspects': ['Počítač', 'software'],

  'confidence': [0.507230281829834, 0.5066105723381042],

  'details': [{'aspect': 'Počítač',

               'confidence': 0.507230281829834,

               'end': 7,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.507230281829834,

               'probability': {'Negative': 0.246384859085083,

                               'Neutral': 0.507230281829834,

                               'Positive': 0.246384859085083},

               'sentiment': 'Neutral',

               'start': 0},

              {'aspect': 'software',

               'confidence': 0.5066105723381042,

               'end': 31,

               'extractor_label': 'ASP-Neutral',

               'extractor_score': 0.5066105723381042,

               'probability': {'Negative': 0.24669471383094788,

                               'Neutral': 0.5066105723381042,

                               'Positive': 0.24669471383094788},

               'sentiment': 'Neutral',

               'start': 22}],

  'positions': [[0, 7], [22, 31]],

  'sentiments': ['Neutral', 'Neutral'],

  'text': 'Počítač je rychlý, ale software je zastaralý.'}]

"""