Medical Embedding
Collection
12 items
•
Updated
•
3
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yasserrmd/cardio-gemma-300m-emb")
# Run inference
queries = [
"What are the limitations of current alternative technologies, such as drug-eluting stents and coated balloons, in the treatment of arterial lesions?",
]
documents = [
'Current studies on alternative technologies are limited to evaluating their use in non-complex and minimally calcified lesions. These technologies have theoretical advantages in inhibiting intimal hyperplasia and intra-stent stenosis, but their effectiveness in more complex lesions is still under evaluation.',
'MSCT (Multi-Slice Computed Tomography) and 3D TEE (Transesophageal Echocardiography) have a role in VIV procedures when the size of the SHV (Surgical Heart Valve) is not known. These imaging techniques can provide valuable information about the size and design of the SHV, which is important for selecting the appropriate THV (Transcatheter Heart Valve) valve type and sizes. By using MSCT or 3D TEE, healthcare professionals can gather the necessary information to ensure the proper placement of the THV during a VIV/VIR procedure.',
"Apart from oxygen supply-demand imbalance and lactic acidosis, factors such as the buffering capacity of H' and volume changes of the exercising muscle cells may play a role in muscle fatigue. The decrease in pH and increase in intracellular osmolality when lactate accumulates without a simultaneous loss of an intracellular anion can contribute to muscle fatigue. Additionally, intracellular acidosis accompanying the increase in lactate may block excitation-contraction coupling, further contributing to fatigue.",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.4404, 0.0641, 0.0375]])
sentence_0
and sentence_1
sentence_0 | sentence_1 | |
---|---|---|
type | string | string |
details |
|
|
sentence_0 | sentence_1 |
---|---|
What are the key features of diabetic cardiomyopathy and how are they affected by 11β-HSD1 inhibition? |
Diabetic cardiomyopathy is characterized by fibrosis and hypertrophy in the heart tissues. In the low dose STZ-high fat model of type 2 diabetes, diabetic mice showed increased collagen deposition and irregular/disorganized muscle fibers in the heart. However, treatment with PF, an inhibitor of 11β-HSD1, normalized these alterations, indicating that 11β-HSD1 inhibition can prevent the development of diabetic cardiomyopathy. |
How does tissue Doppler imaging (TDI) contribute to the assessment of myocardial dyssynchrony? |
Tissue Doppler imaging (TDI) is a technique used in echocardiography to evaluate the motion of the left ventricle. By analyzing myocardial regional velocity curves, TDI can provide information on the timing of systolic contractions in different myocardial segments. In the context of assessing dyssynchrony, TDI can measure the time-to-peak myocardial sustained systolic velocities (Ts) in all 12 left ventricular (LV) segments. The standard deviation of Ts (Ts-SD) can then be calculated to determine the presence of significant systolic IVD. |
How is conventional coronary angiography performed? |
Conventional coronary angiography is performed via a femoral approach using approximately 40 mL of nonionic contrast material. A minimum of six orthogonal views are obtained to evaluate the coronary arteries. The images are evaluated by a board-certified cardiologist who assesses the diameter stenosis by visual estimation. |
MultipleNegativesRankingLoss
with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
per_device_train_batch_size
: 6per_device_eval_batch_size
: 6num_train_epochs
: 1multi_dataset_batch_sampler
: round_robinoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 6per_device_eval_batch_size
: 6per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinrouter_mapping
: {}learning_rate_mapping
: {}Epoch | Step | Training Loss |
---|---|---|
0.1500 | 500 | 0.0276 |
0.2999 | 1000 | 0.0145 |
0.4499 | 1500 | 0.0072 |
0.5999 | 2000 | 0.007 |
0.7499 | 2500 | 0.0039 |
0.8998 | 3000 | 0.0044 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
google/embeddinggemma-300m