disabilityy_model_final

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7063
  • Accuracy: 0.9993
  • F1: 0.9993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.3242 0.1361 100 2.9016 0.5510 0.4600
2.1047 0.2721 200 1.7308 0.9109 0.9011
1.3316 0.4082 300 1.0783 0.9776 0.9773
0.9219 0.5442 400 0.8120 0.9905 0.9905
0.7627 0.6803 500 0.7448 0.9939 0.9939
0.7325 0.8163 600 0.7346 0.9959 0.9959
0.7239 0.9524 700 0.7223 0.9980 0.9980
0.7137 1.0884 800 0.7182 0.9980 0.9980
0.711 1.2245 900 0.7175 0.9966 0.9966
0.7103 1.3605 1000 0.7139 0.9986 0.9986
0.7088 1.4966 1100 0.7134 0.9973 0.9973
0.708 1.6327 1200 0.7131 0.9973 0.9973
0.7071 1.7687 1300 0.7102 0.9980 0.9980
0.7056 1.9048 1400 0.7096 0.9986 0.9986
0.7093 2.0408 1500 0.7081 0.9993 0.9993
0.7046 2.1769 1600 0.7069 0.9993 0.9993
0.705 2.3129 1700 0.7063 0.9993 0.9993
0.7035 2.4490 1800 0.7063 0.9993 0.9993
0.7041 2.5850 1900 0.7071 0.9993 0.9993
0.7033 2.7211 2000 0.7065 0.9993 0.9993

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
108M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yaziedmoh/disabilityy_model_final

Finetuned
(28)
this model