Edit model card

ko-xlsr

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the ./SAMPLE_SPEECH.PY - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5172
  • Cer: 0.1076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Cer
6.742 2.6 1500 0.9038 0.2330
0.9228 5.2 3000 0.6193 0.1656
0.6805 7.8 4500 0.5522 0.1481
0.5577 10.4 6000 0.5136 0.1349
0.4797 13.0 7500 0.5074 0.1312
0.4161 15.6 9000 0.4959 0.1243
0.3701 18.21 10500 0.4948 0.1224
0.3307 20.81 12000 0.4881 0.1199
0.2946 23.41 13500 0.4970 0.1179
0.2636 26.01 15000 0.4950 0.1145
0.2367 28.61 16500 0.4905 0.1119
0.2157 31.21 18000 0.5066 0.1110
0.1979 33.81 19500 0.5133 0.1103
0.1808 36.41 21000 0.5160 0.1091
0.17 39.01 22500 0.5129 0.1074

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yesj1234/xlsr_5p_ko-zh

Finetuned
(204)
this model