yimiwang's picture
End of training
190c2ac verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-petco-filtered_fontsize-ctr
    results: []

bert-petco-filtered_fontsize-ctr

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0022
  • Mse: 0.0022
  • Rmse: 0.0464
  • Mae: 0.0364
  • R2: 0.4468
  • Accuracy: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mse Rmse Mae R2 Accuracy
0.0403 1.0 15 0.0119 0.0119 0.1091 0.0921 -2.0564 0.3
0.0167 2.0 30 0.0031 0.0031 0.0555 0.0449 0.2100 0.6
0.0125 3.0 45 0.0037 0.0037 0.0610 0.0514 0.0429 0.5167
0.0098 4.0 60 0.0026 0.0026 0.0508 0.0407 0.3377 0.6333
0.0105 5.0 75 0.0029 0.0029 0.0543 0.0413 0.2439 0.7
0.0083 6.0 90 0.0029 0.0029 0.0535 0.0392 0.2644 0.7
0.0052 7.0 105 0.0026 0.0026 0.0512 0.0432 0.3280 0.7
0.0044 8.0 120 0.0023 0.0023 0.0482 0.0376 0.4025 0.7667
0.0045 9.0 135 0.0037 0.0037 0.0605 0.0519 0.0601 0.4333
0.0033 10.0 150 0.0028 0.0028 0.0525 0.0367 0.2909 0.7
0.0035 11.0 165 0.0024 0.0024 0.0487 0.0403 0.3918 0.7667
0.003 12.0 180 0.0022 0.0022 0.0471 0.0367 0.4305 0.75
0.0023 13.0 195 0.0022 0.0022 0.0464 0.0364 0.4468 0.8
0.0022 14.0 210 0.0024 0.0024 0.0489 0.0387 0.3863 0.7167
0.0025 15.0 225 0.0024 0.0024 0.0492 0.0379 0.3792 0.75
0.0021 16.0 240 0.0025 0.0025 0.0497 0.0358 0.3667 0.7833
0.0021 17.0 255 0.0024 0.0024 0.0486 0.0366 0.3943 0.7667
0.0017 18.0 270 0.0024 0.0024 0.0485 0.0354 0.3950 0.7833
0.0017 19.0 285 0.0028 0.0028 0.0529 0.0388 0.2819 0.75
0.0018 20.0 300 0.0025 0.0025 0.0496 0.0363 0.3676 0.7667

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2