|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-petco-fullemailbody-ctr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-petco-fullemailbody-ctr |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0024 |
|
- Mse: 0.0024 |
|
- Rmse: 0.0487 |
|
- Mae: 0.0369 |
|
- R2: 0.3917 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:-------:| |
|
| 0.0259 | 1.0 | 15 | 0.0045 | 0.0045 | 0.0671 | 0.0558 | -0.1551 | |
|
| 0.0131 | 2.0 | 30 | 0.0042 | 0.0042 | 0.0645 | 0.0501 | -0.0669 | |
|
| 0.0114 | 3.0 | 45 | 0.0037 | 0.0037 | 0.0609 | 0.0514 | 0.0488 | |
|
| 0.0118 | 4.0 | 60 | 0.0033 | 0.0033 | 0.0576 | 0.0446 | 0.1471 | |
|
| 0.0097 | 5.0 | 75 | 0.0036 | 0.0036 | 0.0599 | 0.0460 | 0.0790 | |
|
| 0.0095 | 6.0 | 90 | 0.0037 | 0.0037 | 0.0606 | 0.0462 | 0.0568 | |
|
| 0.0086 | 7.0 | 105 | 0.0040 | 0.0040 | 0.0629 | 0.0485 | -0.0177 | |
|
| 0.0083 | 8.0 | 120 | 0.0026 | 0.0026 | 0.0513 | 0.0392 | 0.3232 | |
|
| 0.0077 | 9.0 | 135 | 0.0035 | 0.0035 | 0.0595 | 0.0445 | 0.0915 | |
|
| 0.0067 | 10.0 | 150 | 0.0037 | 0.0037 | 0.0606 | 0.0462 | 0.0561 | |
|
| 0.0066 | 11.0 | 165 | 0.0025 | 0.0025 | 0.0503 | 0.0394 | 0.3499 | |
|
| 0.0066 | 12.0 | 180 | 0.0034 | 0.0034 | 0.0580 | 0.0475 | 0.1355 | |
|
| 0.0046 | 13.0 | 195 | 0.0024 | 0.0024 | 0.0487 | 0.0369 | 0.3917 | |
|
| 0.0052 | 14.0 | 210 | 0.0035 | 0.0035 | 0.0587 | 0.0454 | 0.1137 | |
|
| 0.0049 | 15.0 | 225 | 0.0032 | 0.0032 | 0.0567 | 0.0438 | 0.1753 | |
|
| 0.0041 | 16.0 | 240 | 0.0034 | 0.0034 | 0.0581 | 0.0445 | 0.1321 | |
|
| 0.0039 | 17.0 | 255 | 0.0030 | 0.0030 | 0.0548 | 0.0412 | 0.2277 | |
|
| 0.0042 | 18.0 | 270 | 0.0036 | 0.0036 | 0.0603 | 0.0465 | 0.0676 | |
|
| 0.0035 | 19.0 | 285 | 0.0036 | 0.0036 | 0.0601 | 0.0461 | 0.0719 | |
|
| 0.0031 | 20.0 | 300 | 0.0033 | 0.0033 | 0.0574 | 0.0435 | 0.1548 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|