BEREL-finetuned-DSS-pos_cls
This model is a fine-tuned version of dicta-il/BEREL on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1876
- Precision: 0.9281
- Recall: 0.9278
- F1: 0.9280
- Accuracy: 0.9441
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.3317 | 1.0 | 197 | 0.3461 | 0.8773 | 0.8770 | 0.8771 | 0.9027 |
0.342 | 2.0 | 394 | 0.2581 | 0.9040 | 0.9025 | 0.9033 | 0.9242 |
0.2562 | 3.0 | 591 | 0.2226 | 0.9149 | 0.9154 | 0.9152 | 0.9339 |
0.2104 | 4.0 | 788 | 0.2096 | 0.9172 | 0.9190 | 0.9181 | 0.9361 |
0.1944 | 5.0 | 985 | 0.1991 | 0.9221 | 0.9224 | 0.9222 | 0.9393 |
0.1798 | 6.0 | 1182 | 0.1922 | 0.9252 | 0.9247 | 0.9250 | 0.9417 |
0.1678 | 7.0 | 1379 | 0.1900 | 0.9267 | 0.9271 | 0.9269 | 0.9433 |
0.1625 | 8.0 | 1576 | 0.1876 | 0.9281 | 0.9278 | 0.9280 | 0.9441 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Tokenizers 0.20.3
- Downloads last month
- 109
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for yonatanlou/BEREL-finetuned-DSS-pos_cls
Base model
dicta-il/BEREL