ASR_Whisper_Cerebral_Palsy_Arg
This model is a fine-tuned version of openai/whisper-small on the ASR_Preprocess_Cerebral_Palsy_Dataset_Aug dataset. It achieves the following results on the evaluation set:
- Loss: 0.5741
- Cer: 16.7548
- Wer: 19.9232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 280
- training_steps: 2828
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
---|---|---|---|---|---|
0.5726 | 1.9814 | 400 | 22.8761 | 0.7755 | 28.2161 |
0.1687 | 3.9616 | 800 | 19.4152 | 0.6453 | 23.4518 |
0.0637 | 5.9418 | 1200 | 18.9512 | 0.6946 | 22.7384 |
0.0215 | 7.9219 | 1600 | 18.6748 | 0.6044 | 22.2010 |
0.0132 | 9.9021 | 2000 | 17.9068 | 0.6177 | 21.3079 |
0.0085 | 11.8872 | 2400 | 18.1934 | 0.5656 | 21.7711 |
0.0071 | 13.8674 | 2800 | 16.7548 | 0.5741 | 19.9232 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for yoona-J/ASR_Whisper_Cerebral_Palsy_Aug
Base model
openai/whisper-smallEvaluation results
- Wer on ASR_Preprocess_Cerebral_Palsy_Dataset_Augself-reported19.923