ASR_Whisper_Cerebral_Palsy_Arg

This model is a fine-tuned version of openai/whisper-small on the ASR_Preprocess_Cerebral_Palsy_Dataset_Aug dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5741
  • Cer: 16.7548
  • Wer: 19.9232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 280
  • training_steps: 2828
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.5726 1.9814 400 22.8761 0.7755 28.2161
0.1687 3.9616 800 19.4152 0.6453 23.4518
0.0637 5.9418 1200 18.9512 0.6946 22.7384
0.0215 7.9219 1600 18.6748 0.6044 22.2010
0.0132 9.9021 2000 17.9068 0.6177 21.3079
0.0085 11.8872 2400 18.1934 0.5656 21.7711
0.0071 13.8674 2800 16.7548 0.5741 19.9232

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
242M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yoona-J/ASR_Whisper_Cerebral_Palsy_Aug

Finetuned
(2830)
this model

Evaluation results

  • Wer on ASR_Preprocess_Cerebral_Palsy_Dataset_Aug
    self-reported
    19.923