yoriis's picture
Add new CrossEncoder model
4145637 verified
---
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:14805
- loss:BinaryCrossEntropyLoss
- dataset_size:10780
- dataset_size:7756
base_model: aubmindlab/bert-base-arabertv2
pipeline_tag: text-ranking
library_name: sentence-transformers
---
# CrossEncoder based on aubmindlab/bert-base-arabertv2
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) <!-- at revision 97522efce17efa33036ac619802d5cec238dcad9 -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the ๐Ÿค— Hub
model = CrossEncoder("yoriis/arabert-tydi-quqa-task-ar-v2")
# Get scores for pairs of texts
pairs = [
['ู‡ู„ ุฐูƒุฑ ุงู„ู‚ุฑุขู† ุฃู† ุงู„ุชูˆุฑุงุฉ ุชู… ุชุญุฑูŠูู‡ุงุŸ', 'ูŠุง ุฃูŠู‡ุง ุงู„ุฑุณูˆู„ ู„ุง ูŠุญุฒู†ูƒ ุงู„ุฐูŠู† ูŠุณุงุฑุนูˆู† ููŠ ุงู„ูƒูุฑ ู…ู† ุงู„ุฐูŠู† ู‚ุงู„ูˆุง ุขู…ู†ุง ุจุฃููˆุงู‡ู‡ู… ูˆู„ู… ุชุคู…ู† ู‚ู„ูˆุจู‡ู… ูˆู…ู† ุงู„ุฐูŠู† ู‡ุงุฏูˆุง ุณู…ุงุนูˆู† ู„ู„ูƒุฐุจ ุณู…ุงุนูˆู† ู„ู‚ูˆู… ุขุฎุฑูŠู† ู„ู… ูŠุฃุชูˆูƒ ูŠุญุฑููˆู† ุงู„ูƒู„ู… ู…ู† ุจุนุฏ ู…ูˆุงุถุนู‡ ูŠู‚ูˆู„ูˆู† ุฅู† ุฃูˆุชูŠุชู… ู‡ุฐุง ูุฎุฐูˆู‡ ูˆุฅู† ู„ู… ุชุคุชูˆู‡ ูุงุญุฐุฑูˆุง ูˆู…ู† ูŠุฑุฏ ุงู„ู„ู‡ ูุชู†ุชู‡ ูู„ู† ุชู…ู„ูƒ ู„ู‡ ู…ู† ุงู„ู„ู‡ ุดูŠุฆุง ุฃูˆู„ุฆูƒ ุงู„ุฐูŠู† ู„ู… ูŠุฑุฏ ุงู„ู„ู‡ ุฃู† ูŠุทู‡ุฑ ู‚ู„ูˆุจู‡ู… ู„ู‡ู… ููŠ ุงู„ุฏู†ูŠุง ุฎุฒูŠ ูˆู„ู‡ู… ููŠ ุงู„ุขุฎุฑุฉ ุนุฐุงุจ ุนุธูŠู…. ุณู…ุงุนูˆู† ู„ู„ูƒุฐุจ ุฃูƒุงู„ูˆู† ู„ู„ุณุญุช ูุฅู† ุฌุงุกูˆูƒ ูุงุญูƒู… ุจูŠู†ู‡ู… ุฃูˆ ุฃุนุฑุถ ุนู†ู‡ู… ูˆุฅู† ุชุนุฑุถ ุนู†ู‡ู… ูู„ู† ูŠุถุฑูˆูƒ ุดูŠุฆุง ูˆุฅู† ุญูƒู…ุช ูุงุญูƒู… ุจูŠู†ู‡ู… ุจุงู„ู‚ุณุท ุฅู† ุงู„ู„ู‡ ูŠุญุจ ุงู„ู…ู‚ุณุทูŠู†. ูˆูƒูŠู ูŠุญูƒู…ูˆู†ูƒ ูˆุนู†ุฏู‡ู… ุงู„ุชูˆุฑุงุฉ ููŠู‡ุง ุญูƒู… ุงู„ู„ู‡ ุซู… ูŠุชูˆู„ูˆู† ู…ู† ุจุนุฏ ุฐู„ูƒ ูˆู…ุง ุฃูˆู„ุฆูƒ ุจุงู„ู…ุคู…ู†ูŠู†.'],
['ุจู…ุงุฐุง ุดุจู‡ ุงู„ู„ู‡ ุงู„ุฐูŠ ูŠูุชุจุน ุงู„ุญุณู†ุฉ ุจุงู„ุฃุฐู‰ุŸ', 'ูู…ู† ุฃุธู„ู… ู…ู…ู† ูƒุฐุจ ุนู„ู‰ ุงู„ู„ู‡ ูˆูƒุฐุจ ุจุงู„ุตุฏู‚ ุฅุฐ ุฌุงุกู‡ ุฃู„ูŠุณ ููŠ ุฌู‡ู†ู… ู…ุซูˆู‰ ู„ู„ูƒุงูุฑูŠู†. ูˆุงู„ุฐูŠ ุฌุงุก ุจุงู„ุตุฏู‚ ูˆุตุฏู‚ ุจู‡ ุฃูˆู„ุฆูƒ ู‡ู… ุงู„ู…ุชู‚ูˆู†. ู„ู‡ู… ู…ุง ูŠุดุงุกูˆู† ุนู†ุฏ ุฑุจู‡ู… ุฐู„ูƒ ุฌุฒุงุก ุงู„ู…ุญุณู†ูŠู†. ู„ูŠูƒูุฑ ุงู„ู„ู‡ ุนู†ู‡ู… ุฃุณูˆุฃ ุงู„ุฐูŠ ุนู…ู„ูˆุง ูˆูŠุฌุฒูŠู‡ู… ุฃุฌุฑู‡ู… ุจุฃุญุณู† ุงู„ุฐูŠ ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†. ุฃู„ูŠุณ ุงู„ู„ู‡ ุจูƒุงู ุนุจุฏู‡ ูˆูŠุฎูˆููˆู†ูƒ ุจุงู„ุฐูŠู† ู…ู† ุฏูˆู†ู‡ ูˆู…ู† ูŠุถู„ู„ ุงู„ู„ู‡ ูู…ุง ู„ู‡ ู…ู† ู‡ุงุฏ. ูˆู…ู† ูŠู‡ุฏ ุงู„ู„ู‡ ูู…ุง ู„ู‡ ู…ู† ู…ุถู„ ุฃู„ูŠุณ ุงู„ู„ู‡ ุจุนุฒูŠุฒ ุฐูŠ ุงู†ุชู‚ุงู….'],
['ู‡ู„ ู‡ู†ุงูƒ ุฅุดุงุฑุงุช ููŠ ุงู„ู‚ุฑุขู† ุนู† ู†ู‡ุงูŠุฉ ุงู„ูƒูŠุงู† ุงู„ุตู‡ูŠูˆู†ูŠุŸ', 'ูˆู‡ู„ ุฃุชุงูƒ ุญุฏูŠุซ ู…ูˆุณู‰. ุฅุฐ ุฑุฃู‰ ู†ุงุฑุง ูู‚ุงู„ ู„ุฃู‡ู„ู‡ ุงู…ูƒุซูˆุง ุฅู†ูŠ ุขู†ุณุช ู†ุงุฑุง ู„ุนู„ูŠ ุขุชูŠูƒู… ู…ู†ู‡ุง ุจู‚ุจุณ ุฃูˆ ุฃุฌุฏ ุนู„ู‰ ุงู„ู†ุงุฑ ู‡ุฏู‰. ูู„ู…ุง ุฃุชุงู‡ุง ู†ูˆุฏูŠ ูŠุง ู…ูˆุณู‰. ุฅู†ูŠ ุฃู†ุง ุฑุจูƒ ูุงุฎู„ุน ู†ุนู„ูŠูƒ ุฅู†ูƒ ุจุงู„ูˆุงุฏ ุงู„ู…ู‚ุฏุณ ุทูˆู‰. ูˆุฃู†ุง ุงุฎุชุฑุชูƒ ูุงุณุชู…ุน ู„ู…ุง ูŠูˆุญู‰. ุฅู†ู†ูŠ ุฃู†ุง ุงู„ู„ู‡ ู„ุง ุฅู„ู‡ ุฅู„ุง ุฃู†ุง ูุงุนุจุฏู†ูŠ ูˆุฃู‚ู… ุงู„ุตู„ุงุฉ ู„ุฐูƒุฑูŠ. ุฅู† ุงู„ุณุงุนุฉ ุขุชูŠุฉ ุฃูƒุงุฏ ุฃุฎููŠู‡ุง ู„ุชุฌุฒู‰ ูƒู„ ู†ูุณ ุจู…ุง ุชุณุนู‰. ูู„ุง ูŠุตุฏู†ูƒ ุนู†ู‡ุง ู…ู† ู„ุง ูŠุคู…ู† ุจู‡ุง ูˆุงุชุจุน ู‡ูˆุงู‡ ูุชุฑุฏู‰.'],
['ู„ู…ุงุฐุง ุญุฑู… ุงู„ู„ู‡ ุงู„ุชุจู†ูŠุŸ', 'ูˆู‚ุงู„ูˆุง ู‡ุฐู‡ ุฃู†ุนุงู… ูˆุญุฑุซ ุญุฌุฑ ู„ุง ูŠุทุนู…ู‡ุง ุฅู„ุง ู…ู† ู†ุดุงุก ุจุฒุนู…ู‡ู… ูˆุฃู†ุนุงู… ุญุฑู…ุช ุธู‡ูˆุฑู‡ุง ูˆุฃู†ุนุงู… ู„ุง ูŠุฐูƒุฑูˆู† ุงุณู… ุงู„ู„ู‡ ุนู„ูŠู‡ุง ุงูุชุฑุงุก ุนู„ูŠู‡ ุณูŠุฌุฒูŠู‡ู… ุจู…ุง ูƒุงู†ูˆุง ูŠูุชุฑูˆู†. ูˆู‚ุงู„ูˆุง ู…ุง ููŠ ุจุทูˆู† ู‡ุฐู‡ ุงู„ุฃู†ุนุงู… ุฎุงู„ุตุฉ ู„ุฐูƒูˆุฑู†ุง ูˆู…ุญุฑู… ุนู„ู‰ ุฃุฒูˆุงุฌู†ุง ูˆุฅู† ูŠูƒู† ู…ูŠุชุฉ ูู‡ู… ููŠู‡ ุดุฑูƒุงุก ุณูŠุฌุฒูŠู‡ู… ูˆุตูู‡ู… ุฅู†ู‡ ุญูƒูŠู… ุนู„ูŠู…. ู‚ุฏ ุฎุณุฑ ุงู„ุฐูŠู† ู‚ุชู„ูˆุง ุฃูˆู„ุงุฏู‡ู… ุณูู‡ุง ุจุบูŠุฑ ุนู„ู… ูˆุญุฑู…ูˆุง ู…ุง ุฑุฒู‚ู‡ู… ุงู„ู„ู‡ ุงูุชุฑุงุก ุนู„ู‰ ุงู„ู„ู‡ ู‚ุฏ ุถู„ูˆุง ูˆู…ุง ูƒุงู†ูˆุง ู…ู‡ุชุฏูŠู†.'],
['ู…ู‚ุงุชู„ูˆ ุฏุงุนุด ู…ุซู„ุง ุฃูˆ ุงู„ู…ูุณุฏูˆู† ููŠ ุงู„ุฃุฑุถ ู…ู† ุงู„ุชู†ุธูŠู…ุงุช ุงู„ุฅุฑู‡ุงุจูŠุฉุŒ ูŠุชูˆุถุคูˆู† ุฃูŠุถุงุŒ ูู‡ู„ ู‡ุฐุง ูŠุฌุนู„ู‡ู… ุฃุทู‡ุงุฑุงุŸ', 'ูƒูŠู ูŠูƒูˆู† ู„ู„ู…ุดุฑูƒูŠู† ุนู‡ุฏ ุนู†ุฏ ุงู„ู„ู‡ ูˆุนู†ุฏ ุฑุณูˆู„ู‡ ุฅู„ุง ุงู„ุฐูŠู† ุนุงู‡ุฏุชู… ุนู†ุฏ ุงู„ู…ุณุฌุฏ ุงู„ุญุฑุงู… ูู…ุง ุงุณุชู‚ุงู…ูˆุง ู„ูƒู… ูุงุณุชู‚ูŠู…ูˆุง ู„ู‡ู… ุฅู† ุงู„ู„ู‡ ูŠุญุจ ุงู„ู…ุชู‚ูŠู†. ูƒูŠู ูˆุฅู† ูŠุธู‡ุฑูˆุง ุนู„ูŠูƒู… ู„ุง ูŠุฑู‚ุจูˆุง ููŠูƒู… ุฅู„ุง ูˆู„ุง ุฐู…ุฉ ูŠุฑุถูˆู†ูƒู… ุจุฃููˆุงู‡ู‡ู… ูˆุชุฃุจู‰ ู‚ู„ูˆุจู‡ู… ูˆุฃูƒุซุฑู‡ู… ูุงุณู‚ูˆู†. ุงุดุชุฑูˆุง ุจุขูŠุงุช ุงู„ู„ู‡ ุซู…ู†ุง ู‚ู„ูŠู„ุง ูุตุฏูˆุง ุนู† ุณุจูŠู„ู‡ ุฅู†ู‡ู… ุณุงุก ู…ุง ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†. ู„ุง ูŠุฑู‚ุจูˆู† ููŠ ู…ุคู…ู† ุฅู„ุง ูˆู„ุง ุฐู…ุฉ ูˆุฃูˆู„ุฆูƒ ู‡ู… ุงู„ู…ุนุชุฏูˆู†. ูุฅู† ุชุงุจูˆุง ูˆุฃู‚ุงู…ูˆุง ุงู„ุตู„ุงุฉ ูˆุขุชูˆุง ุงู„ุฒูƒุงุฉ ูุฅุฎูˆุงู†ูƒู… ููŠ ุงู„ุฏูŠู† ูˆู†ูุตู„ ุงู„ุขูŠุงุช ู„ู‚ูˆู… ูŠุนู„ู…ูˆู†.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'ู‡ู„ ุฐูƒุฑ ุงู„ู‚ุฑุขู† ุฃู† ุงู„ุชูˆุฑุงุฉ ุชู… ุชุญุฑูŠูู‡ุงุŸ',
[
'ูŠุง ุฃูŠู‡ุง ุงู„ุฑุณูˆู„ ู„ุง ูŠุญุฒู†ูƒ ุงู„ุฐูŠู† ูŠุณุงุฑุนูˆู† ููŠ ุงู„ูƒูุฑ ู…ู† ุงู„ุฐูŠู† ู‚ุงู„ูˆุง ุขู…ู†ุง ุจุฃููˆุงู‡ู‡ู… ูˆู„ู… ุชุคู…ู† ู‚ู„ูˆุจู‡ู… ูˆู…ู† ุงู„ุฐูŠู† ู‡ุงุฏูˆุง ุณู…ุงุนูˆู† ู„ู„ูƒุฐุจ ุณู…ุงุนูˆู† ู„ู‚ูˆู… ุขุฎุฑูŠู† ู„ู… ูŠุฃุชูˆูƒ ูŠุญุฑููˆู† ุงู„ูƒู„ู… ู…ู† ุจุนุฏ ู…ูˆุงุถุนู‡ ูŠู‚ูˆู„ูˆู† ุฅู† ุฃูˆุชูŠุชู… ู‡ุฐุง ูุฎุฐูˆู‡ ูˆุฅู† ู„ู… ุชุคุชูˆู‡ ูุงุญุฐุฑูˆุง ูˆู…ู† ูŠุฑุฏ ุงู„ู„ู‡ ูุชู†ุชู‡ ูู„ู† ุชู…ู„ูƒ ู„ู‡ ู…ู† ุงู„ู„ู‡ ุดูŠุฆุง ุฃูˆู„ุฆูƒ ุงู„ุฐูŠู† ู„ู… ูŠุฑุฏ ุงู„ู„ู‡ ุฃู† ูŠุทู‡ุฑ ู‚ู„ูˆุจู‡ู… ู„ู‡ู… ููŠ ุงู„ุฏู†ูŠุง ุฎุฒูŠ ูˆู„ู‡ู… ููŠ ุงู„ุขุฎุฑุฉ ุนุฐุงุจ ุนุธูŠู…. ุณู…ุงุนูˆู† ู„ู„ูƒุฐุจ ุฃูƒุงู„ูˆู† ู„ู„ุณุญุช ูุฅู† ุฌุงุกูˆูƒ ูุงุญูƒู… ุจูŠู†ู‡ู… ุฃูˆ ุฃุนุฑุถ ุนู†ู‡ู… ูˆุฅู† ุชุนุฑุถ ุนู†ู‡ู… ูู„ู† ูŠุถุฑูˆูƒ ุดูŠุฆุง ูˆุฅู† ุญูƒู…ุช ูุงุญูƒู… ุจูŠู†ู‡ู… ุจุงู„ู‚ุณุท ุฅู† ุงู„ู„ู‡ ูŠุญุจ ุงู„ู…ู‚ุณุทูŠู†. ูˆูƒูŠู ูŠุญูƒู…ูˆู†ูƒ ูˆุนู†ุฏู‡ู… ุงู„ุชูˆุฑุงุฉ ููŠู‡ุง ุญูƒู… ุงู„ู„ู‡ ุซู… ูŠุชูˆู„ูˆู† ู…ู† ุจุนุฏ ุฐู„ูƒ ูˆู…ุง ุฃูˆู„ุฆูƒ ุจุงู„ู…ุคู…ู†ูŠู†.',
'ูู…ู† ุฃุธู„ู… ู…ู…ู† ูƒุฐุจ ุนู„ู‰ ุงู„ู„ู‡ ูˆูƒุฐุจ ุจุงู„ุตุฏู‚ ุฅุฐ ุฌุงุกู‡ ุฃู„ูŠุณ ููŠ ุฌู‡ู†ู… ู…ุซูˆู‰ ู„ู„ูƒุงูุฑูŠู†. ูˆุงู„ุฐูŠ ุฌุงุก ุจุงู„ุตุฏู‚ ูˆุตุฏู‚ ุจู‡ ุฃูˆู„ุฆูƒ ู‡ู… ุงู„ู…ุชู‚ูˆู†. ู„ู‡ู… ู…ุง ูŠุดุงุกูˆู† ุนู†ุฏ ุฑุจู‡ู… ุฐู„ูƒ ุฌุฒุงุก ุงู„ู…ุญุณู†ูŠู†. ู„ูŠูƒูุฑ ุงู„ู„ู‡ ุนู†ู‡ู… ุฃุณูˆุฃ ุงู„ุฐูŠ ุนู…ู„ูˆุง ูˆูŠุฌุฒูŠู‡ู… ุฃุฌุฑู‡ู… ุจุฃุญุณู† ุงู„ุฐูŠ ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†. ุฃู„ูŠุณ ุงู„ู„ู‡ ุจูƒุงู ุนุจุฏู‡ ูˆูŠุฎูˆููˆู†ูƒ ุจุงู„ุฐูŠู† ู…ู† ุฏูˆู†ู‡ ูˆู…ู† ูŠุถู„ู„ ุงู„ู„ู‡ ูู…ุง ู„ู‡ ู…ู† ู‡ุงุฏ. ูˆู…ู† ูŠู‡ุฏ ุงู„ู„ู‡ ูู…ุง ู„ู‡ ู…ู† ู…ุถู„ ุฃู„ูŠุณ ุงู„ู„ู‡ ุจุนุฒูŠุฒ ุฐูŠ ุงู†ุชู‚ุงู….',
'ูˆู‡ู„ ุฃุชุงูƒ ุญุฏูŠุซ ู…ูˆุณู‰. ุฅุฐ ุฑุฃู‰ ู†ุงุฑุง ูู‚ุงู„ ู„ุฃู‡ู„ู‡ ุงู…ูƒุซูˆุง ุฅู†ูŠ ุขู†ุณุช ู†ุงุฑุง ู„ุนู„ูŠ ุขุชูŠูƒู… ู…ู†ู‡ุง ุจู‚ุจุณ ุฃูˆ ุฃุฌุฏ ุนู„ู‰ ุงู„ู†ุงุฑ ู‡ุฏู‰. ูู„ู…ุง ุฃุชุงู‡ุง ู†ูˆุฏูŠ ูŠุง ู…ูˆุณู‰. ุฅู†ูŠ ุฃู†ุง ุฑุจูƒ ูุงุฎู„ุน ู†ุนู„ูŠูƒ ุฅู†ูƒ ุจุงู„ูˆุงุฏ ุงู„ู…ู‚ุฏุณ ุทูˆู‰. ูˆุฃู†ุง ุงุฎุชุฑุชูƒ ูุงุณุชู…ุน ู„ู…ุง ูŠูˆุญู‰. ุฅู†ู†ูŠ ุฃู†ุง ุงู„ู„ู‡ ู„ุง ุฅู„ู‡ ุฅู„ุง ุฃู†ุง ูุงุนุจุฏู†ูŠ ูˆุฃู‚ู… ุงู„ุตู„ุงุฉ ู„ุฐูƒุฑูŠ. ุฅู† ุงู„ุณุงุนุฉ ุขุชูŠุฉ ุฃูƒุงุฏ ุฃุฎููŠู‡ุง ู„ุชุฌุฒู‰ ูƒู„ ู†ูุณ ุจู…ุง ุชุณุนู‰. ูู„ุง ูŠุตุฏู†ูƒ ุนู†ู‡ุง ู…ู† ู„ุง ูŠุคู…ู† ุจู‡ุง ูˆุงุชุจุน ู‡ูˆุงู‡ ูุชุฑุฏู‰.',
'ูˆู‚ุงู„ูˆุง ู‡ุฐู‡ ุฃู†ุนุงู… ูˆุญุฑุซ ุญุฌุฑ ู„ุง ูŠุทุนู…ู‡ุง ุฅู„ุง ู…ู† ู†ุดุงุก ุจุฒุนู…ู‡ู… ูˆุฃู†ุนุงู… ุญุฑู…ุช ุธู‡ูˆุฑู‡ุง ูˆุฃู†ุนุงู… ู„ุง ูŠุฐูƒุฑูˆู† ุงุณู… ุงู„ู„ู‡ ุนู„ูŠู‡ุง ุงูุชุฑุงุก ุนู„ูŠู‡ ุณูŠุฌุฒูŠู‡ู… ุจู…ุง ูƒุงู†ูˆุง ูŠูุชุฑูˆู†. ูˆู‚ุงู„ูˆุง ู…ุง ููŠ ุจุทูˆู† ู‡ุฐู‡ ุงู„ุฃู†ุนุงู… ุฎุงู„ุตุฉ ู„ุฐูƒูˆุฑู†ุง ูˆู…ุญุฑู… ุนู„ู‰ ุฃุฒูˆุงุฌู†ุง ูˆุฅู† ูŠูƒู† ู…ูŠุชุฉ ูู‡ู… ููŠู‡ ุดุฑูƒุงุก ุณูŠุฌุฒูŠู‡ู… ูˆุตูู‡ู… ุฅู†ู‡ ุญูƒูŠู… ุนู„ูŠู…. ู‚ุฏ ุฎุณุฑ ุงู„ุฐูŠู† ู‚ุชู„ูˆุง ุฃูˆู„ุงุฏู‡ู… ุณูู‡ุง ุจุบูŠุฑ ุนู„ู… ูˆุญุฑู…ูˆุง ู…ุง ุฑุฒู‚ู‡ู… ุงู„ู„ู‡ ุงูุชุฑุงุก ุนู„ู‰ ุงู„ู„ู‡ ู‚ุฏ ุถู„ูˆุง ูˆู…ุง ูƒุงู†ูˆุง ู…ู‡ุชุฏูŠู†.',
'ูƒูŠู ูŠูƒูˆู† ู„ู„ู…ุดุฑูƒูŠู† ุนู‡ุฏ ุนู†ุฏ ุงู„ู„ู‡ ูˆุนู†ุฏ ุฑุณูˆู„ู‡ ุฅู„ุง ุงู„ุฐูŠู† ุนุงู‡ุฏุชู… ุนู†ุฏ ุงู„ู…ุณุฌุฏ ุงู„ุญุฑุงู… ูู…ุง ุงุณุชู‚ุงู…ูˆุง ู„ูƒู… ูุงุณุชู‚ูŠู…ูˆุง ู„ู‡ู… ุฅู† ุงู„ู„ู‡ ูŠุญุจ ุงู„ู…ุชู‚ูŠู†. ูƒูŠู ูˆุฅู† ูŠุธู‡ุฑูˆุง ุนู„ูŠูƒู… ู„ุง ูŠุฑู‚ุจูˆุง ููŠูƒู… ุฅู„ุง ูˆู„ุง ุฐู…ุฉ ูŠุฑุถูˆู†ูƒู… ุจุฃููˆุงู‡ู‡ู… ูˆุชุฃุจู‰ ู‚ู„ูˆุจู‡ู… ูˆุฃูƒุซุฑู‡ู… ูุงุณู‚ูˆู†. ุงุดุชุฑูˆุง ุจุขูŠุงุช ุงู„ู„ู‡ ุซู…ู†ุง ู‚ู„ูŠู„ุง ูุตุฏูˆุง ุนู† ุณุจูŠู„ู‡ ุฅู†ู‡ู… ุณุงุก ู…ุง ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†. ู„ุง ูŠุฑู‚ุจูˆู† ููŠ ู…ุคู…ู† ุฅู„ุง ูˆู„ุง ุฐู…ุฉ ูˆุฃูˆู„ุฆูƒ ู‡ู… ุงู„ู…ุนุชุฏูˆู†. ูุฅู† ุชุงุจูˆุง ูˆุฃู‚ุงู…ูˆุง ุงู„ุตู„ุงุฉ ูˆุขุชูˆุง ุงู„ุฒูƒุงุฉ ูุฅุฎูˆุงู†ูƒู… ููŠ ุงู„ุฏูŠู† ูˆู†ูุตู„ ุงู„ุขูŠุงุช ู„ู‚ูˆู… ูŠุนู„ู…ูˆู†.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 7,756 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 11 characters</li><li>mean: 41.94 characters</li><li>max: 201 characters</li></ul> | <ul><li>min: 53 characters</li><li>mean: 344.11 characters</li><li>max: 1086 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.16</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:----------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>ู‡ู„ ุฐูƒุฑ ุงู„ู‚ุฑุขู† ุฃู† ุงู„ุชูˆุฑุงุฉ ุชู… ุชุญุฑูŠูู‡ุงุŸ</code> | <code>ูŠุง ุฃูŠู‡ุง ุงู„ุฑุณูˆู„ ู„ุง ูŠุญุฒู†ูƒ ุงู„ุฐูŠู† ูŠุณุงุฑุนูˆู† ููŠ ุงู„ูƒูุฑ ู…ู† ุงู„ุฐูŠู† ู‚ุงู„ูˆุง ุขู…ู†ุง ุจุฃููˆุงู‡ู‡ู… ูˆู„ู… ุชุคู…ู† ู‚ู„ูˆุจู‡ู… ูˆู…ู† ุงู„ุฐูŠู† ู‡ุงุฏูˆุง ุณู…ุงุนูˆู† ู„ู„ูƒุฐุจ ุณู…ุงุนูˆู† ู„ู‚ูˆู… ุขุฎุฑูŠู† ู„ู… ูŠุฃุชูˆูƒ ูŠุญุฑููˆู† ุงู„ูƒู„ู… ู…ู† ุจุนุฏ ู…ูˆุงุถุนู‡ ูŠู‚ูˆู„ูˆู† ุฅู† ุฃูˆุชูŠุชู… ู‡ุฐุง ูุฎุฐูˆู‡ ูˆุฅู† ู„ู… ุชุคุชูˆู‡ ูุงุญุฐุฑูˆุง ูˆู…ู† ูŠุฑุฏ ุงู„ู„ู‡ ูุชู†ุชู‡ ูู„ู† ุชู…ู„ูƒ ู„ู‡ ู…ู† ุงู„ู„ู‡ ุดูŠุฆุง ุฃูˆู„ุฆูƒ ุงู„ุฐูŠู† ู„ู… ูŠุฑุฏ ุงู„ู„ู‡ ุฃู† ูŠุทู‡ุฑ ู‚ู„ูˆุจู‡ู… ู„ู‡ู… ููŠ ุงู„ุฏู†ูŠุง ุฎุฒูŠ ูˆู„ู‡ู… ููŠ ุงู„ุขุฎุฑุฉ ุนุฐุงุจ ุนุธูŠู…. ุณู…ุงุนูˆู† ู„ู„ูƒุฐุจ ุฃูƒุงู„ูˆู† ู„ู„ุณุญุช ูุฅู† ุฌุงุกูˆูƒ ูุงุญูƒู… ุจูŠู†ู‡ู… ุฃูˆ ุฃุนุฑุถ ุนู†ู‡ู… ูˆุฅู† ุชุนุฑุถ ุนู†ู‡ู… ูู„ู† ูŠุถุฑูˆูƒ ุดูŠุฆุง ูˆุฅู† ุญูƒู…ุช ูุงุญูƒู… ุจูŠู†ู‡ู… ุจุงู„ู‚ุณุท ุฅู† ุงู„ู„ู‡ ูŠุญุจ ุงู„ู…ู‚ุณุทูŠู†. ูˆูƒูŠู ูŠุญูƒู…ูˆู†ูƒ ูˆุนู†ุฏู‡ู… ุงู„ุชูˆุฑุงุฉ ููŠู‡ุง ุญูƒู… ุงู„ู„ู‡ ุซู… ูŠุชูˆู„ูˆู† ู…ู† ุจุนุฏ ุฐู„ูƒ ูˆู…ุง ุฃูˆู„ุฆูƒ ุจุงู„ู…ุคู…ู†ูŠู†.</code> | <code>1.0</code> |
| <code>ุจู…ุงุฐุง ุดุจู‡ ุงู„ู„ู‡ ุงู„ุฐูŠ ูŠูุชุจุน ุงู„ุญุณู†ุฉ ุจุงู„ุฃุฐู‰ุŸ</code> | <code>ูู…ู† ุฃุธู„ู… ู…ู…ู† ูƒุฐุจ ุนู„ู‰ ุงู„ู„ู‡ ูˆูƒุฐุจ ุจุงู„ุตุฏู‚ ุฅุฐ ุฌุงุกู‡ ุฃู„ูŠุณ ููŠ ุฌู‡ู†ู… ู…ุซูˆู‰ ู„ู„ูƒุงูุฑูŠู†. ูˆุงู„ุฐูŠ ุฌุงุก ุจุงู„ุตุฏู‚ ูˆุตุฏู‚ ุจู‡ ุฃูˆู„ุฆูƒ ู‡ู… ุงู„ู…ุชู‚ูˆู†. ู„ู‡ู… ู…ุง ูŠุดุงุกูˆู† ุนู†ุฏ ุฑุจู‡ู… ุฐู„ูƒ ุฌุฒุงุก ุงู„ู…ุญุณู†ูŠู†. ู„ูŠูƒูุฑ ุงู„ู„ู‡ ุนู†ู‡ู… ุฃุณูˆุฃ ุงู„ุฐูŠ ุนู…ู„ูˆุง ูˆูŠุฌุฒูŠู‡ู… ุฃุฌุฑู‡ู… ุจุฃุญุณู† ุงู„ุฐูŠ ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†. ุฃู„ูŠุณ ุงู„ู„ู‡ ุจูƒุงู ุนุจุฏู‡ ูˆูŠุฎูˆููˆู†ูƒ ุจุงู„ุฐูŠู† ู…ู† ุฏูˆู†ู‡ ูˆู…ู† ูŠุถู„ู„ ุงู„ู„ู‡ ูู…ุง ู„ู‡ ู…ู† ู‡ุงุฏ. ูˆู…ู† ูŠู‡ุฏ ุงู„ู„ู‡ ูู…ุง ู„ู‡ ู…ู† ู…ุถู„ ุฃู„ูŠุณ ุงู„ู„ู‡ ุจุนุฒูŠุฒ ุฐูŠ ุงู†ุชู‚ุงู….</code> | <code>0.0</code> |
| <code>ู‡ู„ ู‡ู†ุงูƒ ุฅุดุงุฑุงุช ููŠ ุงู„ู‚ุฑุขู† ุนู† ู†ู‡ุงูŠุฉ ุงู„ูƒูŠุงู† ุงู„ุตู‡ูŠูˆู†ูŠุŸ</code> | <code>ูˆู‡ู„ ุฃุชุงูƒ ุญุฏูŠุซ ู…ูˆุณู‰. ุฅุฐ ุฑุฃู‰ ู†ุงุฑุง ูู‚ุงู„ ู„ุฃู‡ู„ู‡ ุงู…ูƒุซูˆุง ุฅู†ูŠ ุขู†ุณุช ู†ุงุฑุง ู„ุนู„ูŠ ุขุชูŠูƒู… ู…ู†ู‡ุง ุจู‚ุจุณ ุฃูˆ ุฃุฌุฏ ุนู„ู‰ ุงู„ู†ุงุฑ ู‡ุฏู‰. ูู„ู…ุง ุฃุชุงู‡ุง ู†ูˆุฏูŠ ูŠุง ู…ูˆุณู‰. ุฅู†ูŠ ุฃู†ุง ุฑุจูƒ ูุงุฎู„ุน ู†ุนู„ูŠูƒ ุฅู†ูƒ ุจุงู„ูˆุงุฏ ุงู„ู…ู‚ุฏุณ ุทูˆู‰. ูˆุฃู†ุง ุงุฎุชุฑุชูƒ ูุงุณุชู…ุน ู„ู…ุง ูŠูˆุญู‰. ุฅู†ู†ูŠ ุฃู†ุง ุงู„ู„ู‡ ู„ุง ุฅู„ู‡ ุฅู„ุง ุฃู†ุง ูุงุนุจุฏู†ูŠ ูˆุฃู‚ู… ุงู„ุตู„ุงุฉ ู„ุฐูƒุฑูŠ. ุฅู† ุงู„ุณุงุนุฉ ุขุชูŠุฉ ุฃูƒุงุฏ ุฃุฎููŠู‡ุง ู„ุชุฌุฒู‰ ูƒู„ ู†ูุณ ุจู…ุง ุชุณุนู‰. ูู„ุง ูŠุตุฏู†ูƒ ุนู†ู‡ุง ู…ู† ู„ุง ูŠุคู…ู† ุจู‡ุง ูˆุงุชุจุน ู‡ูˆุงู‡ ูุชุฑุฏู‰.</code> | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.5400 | 500 | 0.0274 |
| 1.0799 | 1000 | 0.0003 |
| 1.6199 | 1500 | 0.0001 |
| 2.1598 | 2000 | 0.0001 |
| 2.6998 | 2500 | 0.0001 |
| 0.7418 | 500 | 0.9666 |
| 1.4837 | 1000 | 0.3318 |
| 2.2255 | 1500 | 0.2711 |
| 2.9674 | 2000 | 0.2051 |
| 1.0309 | 500 | 0.3163 |
| 2.0619 | 1000 | 0.2196 |
| 1.0309 | 500 | 0.1761 |
| 2.0619 | 1000 | 0.129 |
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 2.14.4
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->