CrossEncoder based on yoriis/arabert-tydi-ar

This is a Cross Encoder model finetuned from yoriis/arabert-tydi-ar using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: yoriis/arabert-tydi-ar
  • Maximum Sequence Length: 512 tokens
  • Number of Output Labels: 1 label

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("yoriis/arabert-tydi-tafseer-quqa-ar")
# Get scores for pairs of texts
pairs = [
    ['ู…ุง ุญุงู„ ุงู„ุฅู†ุณุงู† ุฅุฐุง ุฃุตุงุจู‡ ุงู„ุถุฑุŸ ', 'ูˆุฅุฐุง ู…ุณ ุงู„ุฅู†ุณุงู† ุงู„ุถุฑ ุฏุนุงู†ุง ู„ุฌู†ุจู‡ ุฃูˆ ู‚ุงุนุฏุง ุฃูˆ ู‚ุขุฆู…ุง ูู„ู…ุง ูƒุดูู†ุง ุนู†ู‡ ุถุฑู‡ ู…ุฑ ูƒุฃู† ู„ู… ูŠุฏุนู†ุง ุฅู„ู‰ ุถุฑ ู…ุณู‡ ูƒุฐู„ูƒ ุฒูŠู† ู„ู„ู…ุณุฑููŠู† ู…ุง ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†{12}ูŠูˆู†ุณ.'],
    ['ุจู…ุงุฐุง ูƒุงู† ู‡ู„ุงูƒ ู‚ูˆู… ู„ูˆุท\xa0ุนู„ูŠู‡ ุงู„ุณู„ุงู…\xa0 ุŸ', 'ูˆุงุฐูƒุฑูˆุง ุฅุฐ ุฌุนู„ูƒู… ุฎู„ูุงุก ู…ู† ุจุนุฏ ุนุงุฏ ูˆุจูˆุฃูƒู… ููŠ ุงู„ุฃุฑุถ ุชุชุฎุฐูˆู† ู…ู† ุณู‡ูˆู„ู‡ุง ู‚ุตูˆุฑุง ูˆุชู†ุญุชูˆู† ุงู„ุฌุจุงู„ ุจูŠูˆุชุง ูุงุฐูƒุฑูˆุง ุขู„ุงุก ุงู„ู„ู‡ ูˆู„ุง ุชุนุซูˆุง ููŠ ุงู„ุฃุฑุถ ู…ูุณุฏูŠู†{74} ุงู„ุฃุนุฑุงู'],
    ['ู…ุง ุฃุตุงุจ ุฃุญุฏ ู…ู† ู…ูƒุฑูˆู‡ ูุจุฅุฐู† ุงู„ู„ู‡ ุชุนุงู„ู‰ ูˆูŠุฌุจ ุงู„ุชุณู„ูŠู… ุจุฃู…ุฑ ุงู„ู„ู‡ ุชุนุงู„ู‰ . ุงุฐูƒุฑ ุงู„ุขูŠุฉ ุงู„ูƒุฑูŠู…ุฉ.', '\xa0ู…ุง ุฃุตุงุจ ู…ู† ู…ุตูŠุจุฉ ุฅู„ุง ุจุฅุฐู† ุงู„ู„ู‡ ูˆู…ู† ูŠุคู…ู† ุจุงู„ู„ู‡ ูŠู‡ุฏ ู‚ู„ุจู‡ ูˆุงู„ู„ู‡ ุจูƒู„ ุดูŠุก ุนู„ูŠู…{11}ุงู„ุชุบุงุจู†'],
    ['ู…ุงุฐุง ุชุนุชู‚ุฏ ุงู„ู†ุตุงุฑู‰ ููŠ ุนูŠุณู‰ ุงุจู† ู…ุฑูŠู… ุŸ', ' ู„ุง ูŠุณุชูˆูŠ ุงู„ู‚ุงุนุฏูˆู† ู…ู† ุงู„ู…ุคู…ู†ูŠู† ุบูŠุฑ ุฃูˆู„ูŠ ุงู„ุถุฑุฑ ูˆุงู„ู…ุฌุงู‡ุฏูˆู† ููŠ ุณุจูŠู„ ุงู„ู„ู‡ ุจุฃู…ูˆุงู„ู‡ู… ูˆุฃู†ูุณู‡ู… ูุถู„ ุงู„ู„ู‡ ุงู„ู…ุฌุงู‡ุฏูŠู† ุจุฃู…ูˆุงู„ู‡ู… ูˆุฃู†ูุณู‡ู… ุนู„ู‰ ุงู„ู‚ุงุนุฏูŠู† ุฏุฑุฌุฉ ูˆูƒู„ุง ูˆุนุฏ ุงู„ู„ู‡ ุงู„ุญุณู†ู‰ ูˆูุถู„ ุงู„ู„ู‡ ุงู„ู…ุฌุงู‡ุฏูŠู† ุนู„ู‰ ุงู„ู‚ุงุนุฏูŠู† ุฃุฌุฑุง ุนุธูŠู…ุง {95}ุงู„ู†ุณุงุก'],
    ['ู…ู† ู‡ู… ุงู„ุฐูŠู† ุฃู†ุนู… ุงู„ู„ู‡ ุนู„ูŠู‡ู… ุŸ', 'ุงู„ุฐูŠ ุฃุทุนู…ู‡ู… ู…ู† ุฌูˆุน ูˆุขู…ู†ู‡ู… ู…ู† ุฎูˆู{4} ู‚ุฑูŠุด'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'ู…ุง ุญุงู„ ุงู„ุฅู†ุณุงู† ุฅุฐุง ุฃุตุงุจู‡ ุงู„ุถุฑุŸ ',
    [
        'ูˆุฅุฐุง ู…ุณ ุงู„ุฅู†ุณุงู† ุงู„ุถุฑ ุฏุนุงู†ุง ู„ุฌู†ุจู‡ ุฃูˆ ู‚ุงุนุฏุง ุฃูˆ ู‚ุขุฆู…ุง ูู„ู…ุง ูƒุดูู†ุง ุนู†ู‡ ุถุฑู‡ ู…ุฑ ูƒุฃู† ู„ู… ูŠุฏุนู†ุง ุฅู„ู‰ ุถุฑ ู…ุณู‡ ูƒุฐู„ูƒ ุฒูŠู† ู„ู„ู…ุณุฑููŠู† ู…ุง ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†{12}ูŠูˆู†ุณ.',
        'ูˆุงุฐูƒุฑูˆุง ุฅุฐ ุฌุนู„ูƒู… ุฎู„ูุงุก ู…ู† ุจุนุฏ ุนุงุฏ ูˆุจูˆุฃูƒู… ููŠ ุงู„ุฃุฑุถ ุชุชุฎุฐูˆู† ู…ู† ุณู‡ูˆู„ู‡ุง ู‚ุตูˆุฑุง ูˆุชู†ุญุชูˆู† ุงู„ุฌุจุงู„ ุจูŠูˆุชุง ูุงุฐูƒุฑูˆุง ุขู„ุงุก ุงู„ู„ู‡ ูˆู„ุง ุชุนุซูˆุง ููŠ ุงู„ุฃุฑุถ ู…ูุณุฏูŠู†{74} ุงู„ุฃุนุฑุงู',
        '\xa0ู…ุง ุฃุตุงุจ ู…ู† ู…ุตูŠุจุฉ ุฅู„ุง ุจุฅุฐู† ุงู„ู„ู‡ ูˆู…ู† ูŠุคู…ู† ุจุงู„ู„ู‡ ูŠู‡ุฏ ู‚ู„ุจู‡ ูˆุงู„ู„ู‡ ุจูƒู„ ุดูŠุก ุนู„ูŠู…{11}ุงู„ุชุบุงุจู†',
        ' ู„ุง ูŠุณุชูˆูŠ ุงู„ู‚ุงุนุฏูˆู† ู…ู† ุงู„ู…ุคู…ู†ูŠู† ุบูŠุฑ ุฃูˆู„ูŠ ุงู„ุถุฑุฑ ูˆุงู„ู…ุฌุงู‡ุฏูˆู† ููŠ ุณุจูŠู„ ุงู„ู„ู‡ ุจุฃู…ูˆุงู„ู‡ู… ูˆุฃู†ูุณู‡ู… ูุถู„ ุงู„ู„ู‡ ุงู„ู…ุฌุงู‡ุฏูŠู† ุจุฃู…ูˆุงู„ู‡ู… ูˆุฃู†ูุณู‡ู… ุนู„ู‰ ุงู„ู‚ุงุนุฏูŠู† ุฏุฑุฌุฉ ูˆูƒู„ุง ูˆุนุฏ ุงู„ู„ู‡ ุงู„ุญุณู†ู‰ ูˆูุถู„ ุงู„ู„ู‡ ุงู„ู…ุฌุงู‡ุฏูŠู† ุนู„ู‰ ุงู„ู‚ุงุนุฏูŠู† ุฃุฌุฑุง ุนุธูŠู…ุง {95}ุงู„ู†ุณุงุก',
        'ุงู„ุฐูŠ ุฃุทุนู…ู‡ู… ู…ู† ุฌูˆุน ูˆุขู…ู†ู‡ู… ู…ู† ุฎูˆู{4} ู‚ุฑูŠุด',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 13,476 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 8 characters
    • mean: 74.1 characters
    • max: 1499 characters
    • min: 17 characters
    • mean: 135.53 characters
    • max: 1218 characters
    • min: 0.0
    • mean: 0.24
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    ู…ุง ุญุงู„ ุงู„ุฅู†ุณุงู† ุฅุฐุง ุฃุตุงุจู‡ ุงู„ุถุฑุŸ ูˆุฅุฐุง ู…ุณ ุงู„ุฅู†ุณุงู† ุงู„ุถุฑ ุฏุนุงู†ุง ู„ุฌู†ุจู‡ ุฃูˆ ู‚ุงุนุฏุง ุฃูˆ ู‚ุขุฆู…ุง ูู„ู…ุง ูƒุดูู†ุง ุนู†ู‡ ุถุฑู‡ ู…ุฑ ูƒุฃู† ู„ู… ูŠุฏุนู†ุง ุฅู„ู‰ ุถุฑ ู…ุณู‡ ูƒุฐู„ูƒ ุฒูŠู† ู„ู„ู…ุณุฑููŠู† ู…ุง ูƒุงู†ูˆุง ูŠุนู…ู„ูˆู†{12}ูŠูˆู†ุณ. 1.0
    ุจู…ุงุฐุง ูƒุงู† ู‡ู„ุงูƒ ู‚ูˆู… ู„ูˆุท ุนู„ูŠู‡ ุงู„ุณู„ุงู…  ุŸ ูˆุงุฐูƒุฑูˆุง ุฅุฐ ุฌุนู„ูƒู… ุฎู„ูุงุก ู…ู† ุจุนุฏ ุนุงุฏ ูˆุจูˆุฃูƒู… ููŠ ุงู„ุฃุฑุถ ุชุชุฎุฐูˆู† ู…ู† ุณู‡ูˆู„ู‡ุง ู‚ุตูˆุฑุง ูˆุชู†ุญุชูˆู† ุงู„ุฌุจุงู„ ุจูŠูˆุชุง ูุงุฐูƒุฑูˆุง ุขู„ุงุก ุงู„ู„ู‡ ูˆู„ุง ุชุนุซูˆุง ููŠ ุงู„ุฃุฑุถ ู…ูุณุฏูŠู†{74} ุงู„ุฃุนุฑุงู 0.0
    ู…ุง ุฃุตุงุจ ุฃุญุฏ ู…ู† ู…ูƒุฑูˆู‡ ูุจุฅุฐู† ุงู„ู„ู‡ ุชุนุงู„ู‰ ูˆูŠุฌุจ ุงู„ุชุณู„ูŠู… ุจุฃู…ุฑ ุงู„ู„ู‡ ุชุนุงู„ู‰ . ุงุฐูƒุฑ ุงู„ุขูŠุฉ ุงู„ูƒุฑูŠู…ุฉ.  ู…ุง ุฃุตุงุจ ู…ู† ู…ุตูŠุจุฉ ุฅู„ุง ุจุฅุฐู† ุงู„ู„ู‡ ูˆู…ู† ูŠุคู…ู† ุจุงู„ู„ู‡ ูŠู‡ุฏ ู‚ู„ุจู‡ ูˆุงู„ู„ู‡ ุจูƒู„ ุดูŠุก ุนู„ูŠู…{11}ุงู„ุชุบุงุจู† 1.0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.5931 500 1.1727
1.1862 1000 0.4899
1.7794 1500 0.4133
2.3725 2000 0.3503
2.9656 2500 0.3202
3.5587 3000 0.2675

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
8
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yoriis/arabert-tydi-tafseer-quqa-ar

Finetuned
(3)
this model