GLoRIA / README.md
youngzhou12's picture
Update README.md
0c1c485 verified
---
license: mit
library_name: pytorch
tags:
- Medical Vsion-Language Pre-Training
- BenchX
---
# GLoRIA Checkpoint Model Card
A retrained GLoRIA model for benchmarking medical vision-language pre-training methods within the BenchX framework.
## Model Details
- **Model Type**: GLoRIA
- **Architecture**: ResNet-50 image encoder and BERT text encoder
- **Original Papers**: [GLoRIA: A Multimodal Global-Local Representation Learning Framework for Label-efficient Medical Image Recognition](https://openaccess.thecvf.com/content/ICCV2021/papers/Huang_GLoRIA_A_Multimodal_Global-Local_Representation_Learning_Framework_for_Label-Efficient_Medical_ICCV_2021_paper.pdf)
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX
## Intended Use
- **Primary Use Cases**:
- Benchmarking performance for Medical Image Classification
- Benchmarking performance for Medical Image Segmentation
- Benchmarking performance for Medical Report Generation
## Pre-Training Data
- **Dataset**:
- Data source(s): MIMIC-CXR
- Types of medical images: Frontal chest X-rays
- Text data type: Associated radiology reports
## Prerequisites
Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX.
## Training & Evaluation
### 1. Classification
To fine-tune GLoRIA for classification, run this command:
```
python bin/train.py config/classification/<dataset_name>/gloria.yml
```
### 2. Segmentation
To fine-tune GLoRIA for segmentation, run this command:
```
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/gloria.yml
```
### 3. Report Generation
To fine-tune GLoRIA for report generation, run this command:
```
python bin/train.py config/report_generation/<dataset_name>/gloria.yml
```
### 4. Evaluation
To evaluate fine-tuned GLoRIA models, run:
```
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/gloria.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/gloria.yml <path_to_checkpoint>
```
## Citations
```bibtex
@inproceedings{huang2021gloria,
title={GLoRIA: A Multimodal Global-Local Representation Learning Framework for Label-Efficient Medical Image Recognition},
author={Huang, Shih-Cheng and Shen, Liyue and Lungren, Matthew P and Yeung, Serena},
booktitle={Proceedings of ICCV},
pages={3942--3951},
year={2021}
}
```
```bibtex
@inproceedings{zhou2024benchx,
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
booktitle={Proceedings of NeurIPS},
year={2024}
}
```