all-MiniLM-L6-v13-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'smart toothbrush',
'onions vine leaves',
'crispy cheese sauce casserole',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.8232 | 61100 | 2.2627 |
0.8246 | 61200 | 1.8503 |
0.8259 | 61300 | 2.0076 |
0.8273 | 61400 | 1.7956 |
0.8286 | 61500 | 1.5268 |
0.8300 | 61600 | 1.8155 |
0.8313 | 61700 | 2.1089 |
0.8327 | 61800 | 2.4272 |
0.8340 | 61900 | 1.9374 |
0.8354 | 62000 | 1.6402 |
0.8367 | 62100 | 2.4922 |
0.8381 | 62200 | 1.9729 |
0.8394 | 62300 | 1.5534 |
0.8408 | 62400 | 1.7918 |
0.8421 | 62500 | 2.2717 |
0.8434 | 62600 | 2.2199 |
0.8448 | 62700 | 1.7964 |
0.8461 | 62800 | 2.2251 |
0.8475 | 62900 | 2.0824 |
0.8488 | 63000 | 1.647 |
0.8502 | 63100 | 1.5672 |
0.8515 | 63200 | 1.7727 |
0.8529 | 63300 | 1.7529 |
0.8542 | 63400 | 1.3972 |
0.8556 | 63500 | 1.8951 |
0.8569 | 63600 | 1.7989 |
0.8583 | 63700 | 1.5449 |
0.8596 | 63800 | 1.9917 |
0.8610 | 63900 | 1.8591 |
0.8623 | 64000 | 1.9657 |
0.8637 | 64100 | 2.2015 |
0.8650 | 64200 | 1.8189 |
0.8664 | 64300 | 1.9765 |
0.8677 | 64400 | 1.8208 |
0.8690 | 64500 | 2.007 |
0.8704 | 64600 | 2.181 |
0.8717 | 64700 | 2.2569 |
0.8731 | 64800 | 1.6881 |
0.8744 | 64900 | 1.7391 |
0.8758 | 65000 | 2.0425 |
0.8771 | 65100 | 1.7074 |
0.8785 | 65200 | 1.9264 |
0.8798 | 65300 | 1.6291 |
0.8812 | 65400 | 1.7177 |
0.8825 | 65500 | 1.5505 |
0.8839 | 65600 | 2.1976 |
0.8852 | 65700 | 1.7166 |
0.8866 | 65800 | 1.623 |
0.8879 | 65900 | 1.8934 |
0.8893 | 66000 | 1.5433 |
0.8906 | 66100 | 2.303 |
0.8920 | 66200 | 2.0442 |
0.8933 | 66300 | 1.9883 |
0.8946 | 66400 | 1.7443 |
0.8960 | 66500 | 1.8812 |
0.8973 | 66600 | 1.872 |
0.8987 | 66700 | 1.826 |
0.9000 | 66800 | 1.9124 |
0.9014 | 66900 | 2.1901 |
0.9027 | 67000 | 1.8261 |
0.9041 | 67100 | 1.8076 |
0.9054 | 67200 | 1.9869 |
0.9068 | 67300 | 1.7586 |
0.9081 | 67400 | 1.6167 |
0.9095 | 67500 | 2.0103 |
0.9108 | 67600 | 1.9229 |
0.9122 | 67700 | 1.7532 |
0.9135 | 67800 | 1.8408 |
0.9149 | 67900 | 1.4797 |
0.9162 | 68000 | 1.818 |
0.9176 | 68100 | 1.6391 |
0.9189 | 68200 | 1.6242 |
0.9202 | 68300 | 1.639 |
0.9216 | 68400 | 2.0135 |
0.9229 | 68500 | 1.8024 |
0.9243 | 68600 | 1.8188 |
0.9256 | 68700 | 1.556 |
0.9270 | 68800 | 1.7777 |
0.9283 | 68900 | 1.6406 |
0.9297 | 69000 | 1.5881 |
0.9310 | 69100 | 2.0322 |
0.9324 | 69200 | 1.8145 |
0.9337 | 69300 | 2.0887 |
0.9351 | 69400 | 1.5552 |
0.9364 | 69500 | 1.7682 |
0.9378 | 69600 | 2.1938 |
0.9391 | 69700 | 2.1021 |
0.9405 | 69800 | 1.6815 |
0.9418 | 69900 | 1.6488 |
0.9432 | 70000 | 1.9412 |
0.9445 | 70100 | 1.765 |
0.9458 | 70200 | 2.0429 |
0.9472 | 70300 | 1.9302 |
0.9485 | 70400 | 2.0909 |
0.9499 | 70500 | 1.6209 |
0.9512 | 70600 | 2.203 |
0.9526 | 70700 | 1.9052 |
0.9539 | 70800 | 2.2339 |
0.9553 | 70900 | 1.8504 |
0.9566 | 71000 | 1.9318 |
0.9580 | 71100 | 1.5013 |
0.9593 | 71200 | 2.0928 |
0.9607 | 71300 | 1.8393 |
0.9620 | 71400 | 1.9516 |
0.9634 | 71500 | 1.8203 |
0.9647 | 71600 | 1.9596 |
0.9661 | 71700 | 2.0126 |
0.9674 | 71800 | 1.5654 |
0.9688 | 71900 | 1.7494 |
0.9701 | 72000 | 1.675 |
0.9714 | 72100 | 1.9596 |
0.9728 | 72200 | 1.8531 |
0.9741 | 72300 | 1.695 |
0.9755 | 72400 | 1.98 |
0.9768 | 72500 | 1.6654 |
0.9782 | 72600 | 1.4514 |
0.9795 | 72700 | 1.669 |
0.9809 | 72800 | 1.5103 |
0.9822 | 72900 | 1.5932 |
0.9836 | 73000 | 1.9951 |
0.9849 | 73100 | 1.6629 |
0.9863 | 73200 | 1.6346 |
0.9876 | 73300 | 1.7458 |
0.9890 | 73400 | 1.5405 |
0.9903 | 73500 | 2.2183 |
0.9917 | 73600 | 2.4572 |
0.9930 | 73700 | 1.6371 |
0.9944 | 73800 | 1.9842 |
0.9957 | 73900 | 1.642 |
0.9970 | 74000 | 1.8484 |
0.9984 | 74100 | 1.6463 |
0.9997 | 74200 | 1.7123 |
1.0011 | 74300 | 1.4431 |
1.0024 | 74400 | 2.0678 |
1.0038 | 74500 | 1.5143 |
1.0051 | 74600 | 1.6055 |
1.0065 | 74700 | 1.5292 |
1.0078 | 74800 | 2.052 |
1.0092 | 74900 | 1.9049 |
1.0105 | 75000 | 1.6666 |
1.0119 | 75100 | 1.7374 |
1.0132 | 75200 | 1.5201 |
1.0146 | 75300 | 1.6994 |
1.0159 | 75400 | 1.8111 |
1.0173 | 75500 | 1.9701 |
1.0186 | 75600 | 1.7418 |
1.0200 | 75700 | 1.4604 |
1.0213 | 75800 | 1.8545 |
1.0226 | 75900 | 1.487 |
1.0240 | 76000 | 1.9216 |
1.0253 | 76100 | 1.2685 |
1.0267 | 76200 | 1.6035 |
1.0280 | 76300 | 1.5329 |
1.0294 | 76400 | 1.7169 |
1.0307 | 76500 | 1.4756 |
1.0321 | 76600 | 1.4021 |
1.0334 | 76700 | 1.7533 |
1.0348 | 76800 | 2.3071 |
1.0361 | 76900 | 1.8261 |
1.0375 | 77000 | 2.1211 |
1.0388 | 77100 | 1.9237 |
1.0402 | 77200 | 1.7846 |
1.0415 | 77300 | 1.5664 |
1.0429 | 77400 | 1.8463 |
1.0442 | 77500 | 1.7455 |
1.0456 | 77600 | 1.7717 |
1.0469 | 77700 | 1.6028 |
1.0482 | 77800 | 2.3449 |
1.0496 | 77900 | 1.7559 |
1.0509 | 78000 | 2.3763 |
1.0523 | 78100 | 1.844 |
1.0536 | 78200 | 1.5563 |
1.0550 | 78300 | 1.7808 |
1.0563 | 78400 | 2.0689 |
1.0577 | 78500 | 1.3285 |
1.0590 | 78600 | 1.5348 |
1.0604 | 78700 | 2.4918 |
1.0617 | 78800 | 2.2498 |
1.0631 | 78900 | 1.8905 |
1.0644 | 79000 | 1.8463 |
1.0658 | 79100 | 1.7168 |
1.0671 | 79200 | 2.215 |
1.0685 | 79300 | 1.5194 |
1.0698 | 79400 | 1.6528 |
1.0712 | 79500 | 1.7271 |
1.0725 | 79600 | 1.8336 |
1.0738 | 79700 | 1.6057 |
1.0752 | 79800 | 1.6951 |
1.0765 | 79900 | 1.811 |
1.0779 | 80000 | 1.8606 |
1.0792 | 80100 | 1.6004 |
1.0806 | 80200 | 1.9454 |
1.0819 | 80300 | 1.9395 |
1.0833 | 80400 | 1.5483 |
1.0846 | 80500 | 1.6592 |
1.0860 | 80600 | 1.7823 |
1.0873 | 80700 | 1.6464 |
1.0887 | 80800 | 1.7621 |
1.0900 | 80900 | 1.9007 |
1.0914 | 81000 | 1.817 |
1.0927 | 81100 | 1.8079 |
1.0941 | 81200 | 1.793 |
1.0954 | 81300 | 1.775 |
1.0968 | 81400 | 1.8482 |
1.0981 | 81500 | 2.1591 |
1.0994 | 81600 | 1.8745 |
1.1008 | 81700 | 1.5664 |
1.1021 | 81800 | 2.0571 |
1.1035 | 81900 | 1.5686 |
1.1048 | 82000 | 1.847 |
1.1062 | 82100 | 1.6045 |
1.1075 | 82200 | 1.2121 |
1.1089 | 82300 | 1.5535 |
1.1102 | 82400 | 1.7324 |
1.1116 | 82500 | 1.5164 |
1.1129 | 82600 | 1.6282 |
1.1143 | 82700 | 1.8102 |
1.1156 | 82800 | 1.39 |
1.1170 | 82900 | 1.8485 |
1.1183 | 83000 | 1.977 |
1.1197 | 83100 | 1.6974 |
1.1210 | 83200 | 2.0346 |
1.1224 | 83300 | 1.418 |
1.1237 | 83400 | 2.2979 |
1.1250 | 83500 | 2.3943 |
1.1264 | 83600 | 1.651 |
1.1277 | 83700 | 1.6725 |
1.1291 | 83800 | 1.6154 |
1.1304 | 83900 | 1.6627 |
1.1318 | 84000 | 1.8559 |
1.1331 | 84100 | 1.7952 |
1.1345 | 84200 | 1.7902 |
1.1358 | 84300 | 1.9019 |
1.1372 | 84400 | 1.4513 |
1.1385 | 84500 | 1.7438 |
1.1399 | 84600 | 1.5009 |
1.1412 | 84700 | 1.6993 |
1.1426 | 84800 | 1.6195 |
1.1439 | 84900 | 1.4334 |
1.1453 | 85000 | 1.5223 |
1.1466 | 85100 | 1.6166 |
1.1480 | 85200 | 1.8966 |
1.1493 | 85300 | 1.7093 |
1.1506 | 85400 | 1.3838 |
1.1520 | 85500 | 1.7472 |
1.1533 | 85600 | 1.4164 |
1.1547 | 85700 | 1.233 |
1.1560 | 85800 | 1.4688 |
1.1574 | 85900 | 1.4373 |
1.1587 | 86000 | 1.491 |
1.1601 | 86100 | 2.102 |
1.1614 | 86200 | 2.1561 |
1.1628 | 86300 | 1.4177 |
1.1641 | 86400 | 1.5393 |
1.1655 | 86500 | 1.6477 |
1.1668 | 86600 | 2.3109 |
1.1682 | 86700 | 1.5485 |
1.1695 | 86800 | 1.5293 |
1.1709 | 86900 | 1.6376 |
1.1722 | 87000 | 1.5661 |
1.1736 | 87100 | 1.6482 |
1.1749 | 87200 | 1.7779 |
1.1762 | 87300 | 1.3775 |
1.1776 | 87400 | 1.6072 |
1.1789 | 87500 | 1.3095 |
1.1803 | 87600 | 1.4503 |
1.1816 | 87700 | 1.4568 |
1.1830 | 87800 | 1.4942 |
1.1843 | 87900 | 1.5583 |
1.1857 | 88000 | 1.7898 |
1.1870 | 88100 | 1.7546 |
1.1884 | 88200 | 1.205 |
1.1897 | 88300 | 1.9065 |
1.1911 | 88400 | 2.0353 |
1.1924 | 88500 | 1.7578 |
1.1938 | 88600 | 1.8053 |
1.1951 | 88700 | 1.3341 |
1.1965 | 88800 | 2.0699 |
1.1978 | 88900 | 1.8514 |
1.1992 | 89000 | 1.9375 |
1.2005 | 89100 | 1.845 |
1.2018 | 89200 | 1.3934 |
1.2032 | 89300 | 1.4777 |
1.2045 | 89400 | 1.5636 |
1.2059 | 89500 | 1.7731 |
1.2072 | 89600 | 1.4624 |
1.2086 | 89700 | 1.7582 |
1.2099 | 89800 | 1.4571 |
1.2113 | 89900 | 1.6627 |
1.2126 | 90000 | 1.3795 |
1.2140 | 90100 | 2.2098 |
1.2153 | 90200 | 1.417 |
1.2167 | 90300 | 1.3832 |
1.2180 | 90400 | 1.7651 |
1.2194 | 90500 | 1.8122 |
1.2207 | 90600 | 1.5503 |
1.2221 | 90700 | 2.2202 |
1.2234 | 90800 | 1.593 |
1.2248 | 90900 | 1.5671 |
1.2261 | 91000 | 1.6143 |
1.2274 | 91100 | 1.9637 |
1.2288 | 91200 | 1.4438 |
1.2301 | 91300 | 1.9687 |
1.2315 | 91400 | 1.7887 |
1.2328 | 91500 | 1.7756 |
1.2342 | 91600 | 1.4491 |
1.2355 | 91700 | 2.2564 |
1.2369 | 91800 | 1.4821 |
1.2382 | 91900 | 1.5253 |
1.2396 | 92000 | 1.5747 |
1.2409 | 92100 | 1.1671 |
1.2423 | 92200 | 1.9347 |
1.2436 | 92300 | 1.6319 |
1.2450 | 92400 | 2.3654 |
1.2463 | 92500 | 1.537 |
1.2477 | 92600 | 1.5141 |
1.2490 | 92700 | 1.9275 |
1.2504 | 92800 | 1.8062 |
1.2517 | 92900 | 1.7132 |
1.2530 | 93000 | 2.4315 |
1.2544 | 93100 | 1.1016 |
1.2557 | 93200 | 1.6248 |
1.2571 | 93300 | 2.2185 |
1.2584 | 93400 | 1.4869 |
1.2598 | 93500 | 1.7578 |
1.2611 | 93600 | 1.3692 |
1.2625 | 93700 | 2.2538 |
1.2638 | 93800 | 1.4158 |
1.2652 | 93900 | 1.4309 |
1.2665 | 94000 | 2.036 |
1.2679 | 94100 | 1.5315 |
1.2692 | 94200 | 1.2562 |
1.2706 | 94300 | 1.4589 |
1.2719 | 94400 | 1.4579 |
1.2733 | 94500 | 1.3806 |
1.2746 | 94600 | 1.4328 |
1.2760 | 94700 | 1.3881 |
1.2773 | 94800 | 1.6977 |
1.2786 | 94900 | 1.9541 |
1.2800 | 95000 | 1.8359 |
1.2813 | 95100 | 1.4229 |
1.2827 | 95200 | 1.3777 |
1.2840 | 95300 | 1.486 |
1.2854 | 95400 | 1.5093 |
1.2867 | 95500 | 1.6792 |
1.2881 | 95600 | 2.0964 |
1.2894 | 95700 | 1.9592 |
1.2908 | 95800 | 1.8839 |
1.2921 | 95900 | 1.8193 |
1.2935 | 96000 | 1.2074 |
1.2948 | 96100 | 1.5 |
1.2962 | 96200 | 1.6936 |
1.2975 | 96300 | 1.2643 |
1.2989 | 96400 | 1.7983 |
1.3002 | 96500 | 1.9845 |
1.3016 | 96600 | 1.97 |
1.3029 | 96700 | 1.824 |
1.3042 | 96800 | 1.8034 |
1.3056 | 96900 | 1.6887 |
1.3069 | 97000 | 1.9653 |
1.3083 | 97100 | 2.0337 |
1.3096 | 97200 | 1.9934 |
1.3110 | 97300 | 1.5434 |
1.3123 | 97400 | 1.8976 |
1.3137 | 97500 | 1.6114 |
1.3150 | 97600 | 1.7799 |
1.3164 | 97700 | 2.1148 |
1.3177 | 97800 | 1.6252 |
1.3191 | 97900 | 2.1435 |
1.3204 | 98000 | 1.7719 |
1.3218 | 98100 | 1.8351 |
1.3231 | 98200 | 1.3329 |
1.3245 | 98300 | 1.9484 |
1.3258 | 98400 | 1.9758 |
1.3272 | 98500 | 1.2146 |
1.3285 | 98600 | 1.4158 |
1.3298 | 98700 | 1.6679 |
1.3312 | 98800 | 1.9363 |
1.3325 | 98900 | 1.4793 |
1.3339 | 99000 | 1.257 |
1.3352 | 99100 | 1.9477 |
1.3366 | 99200 | 1.603 |
1.3379 | 99300 | 1.4738 |
1.3393 | 99400 | 1.6832 |
1.3406 | 99500 | 1.6934 |
1.3420 | 99600 | 1.715 |
1.3433 | 99700 | 1.4162 |
1.3447 | 99800 | 1.7815 |
1.3460 | 99900 | 1.9255 |
1.3474 | 100000 | 1.5564 |
1.3487 | 100100 | 1.7694 |
1.3501 | 100200 | 1.7545 |
1.3514 | 100300 | 1.3728 |
1.3528 | 100400 | 1.5254 |
1.3541 | 100500 | 1.7833 |
1.3554 | 100600 | 1.7485 |
1.3568 | 100700 | 1.8016 |
1.3581 | 100800 | 1.7602 |
1.3595 | 100900 | 2.0944 |
1.3608 | 101000 | 1.6225 |
1.3622 | 101100 | 1.8505 |
1.3635 | 101200 | 1.5885 |
1.3649 | 101300 | 1.6147 |
1.3662 | 101400 | 1.6244 |
1.3676 | 101500 | 1.9271 |
1.3689 | 101600 | 1.4003 |
1.3703 | 101700 | 1.9319 |
1.3716 | 101800 | 1.4809 |
1.3730 | 101900 | 1.4683 |
1.3743 | 102000 | 1.8048 |
1.3757 | 102100 | 1.658 |
1.3770 | 102200 | 1.4604 |
1.3784 | 102300 | 1.6056 |
1.3797 | 102400 | 1.4837 |
1.3810 | 102500 | 1.7507 |
1.3824 | 102600 | 1.4528 |
1.3837 | 102700 | 1.7623 |
1.3851 | 102800 | 1.6916 |
1.3864 | 102900 | 1.0608 |
1.3878 | 103000 | 1.2387 |
1.3891 | 103100 | 1.3267 |
1.3905 | 103200 | 1.7035 |
1.3918 | 103300 | 1.9545 |
1.3932 | 103400 | 1.4143 |
1.3945 | 103500 | 1.9986 |
1.3959 | 103600 | 1.5485 |
1.3972 | 103700 | 1.6946 |
1.3986 | 103800 | 1.4163 |
1.3999 | 103900 | 1.7001 |
1.4013 | 104000 | 1.8313 |
1.4026 | 104100 | 1.6345 |
1.4040 | 104200 | 2.0902 |
1.4053 | 104300 | 1.6568 |
1.4066 | 104400 | 2.1615 |
1.4080 | 104500 | 2.0037 |
1.4093 | 104600 | 1.702 |
1.4107 | 104700 | 1.5521 |
1.4120 | 104800 | 1.5274 |
1.4134 | 104900 | 1.431 |
1.4147 | 105000 | 1.7616 |
1.4161 | 105100 | 1.6825 |
1.4174 | 105200 | 1.6137 |
1.4188 | 105300 | 1.8515 |
1.4201 | 105400 | 1.7499 |
1.4215 | 105500 | 1.8541 |
1.4228 | 105600 | 1.7024 |
1.4242 | 105700 | 1.545 |
1.4255 | 105800 | 1.7382 |
1.4269 | 105900 | 1.7512 |
1.4282 | 106000 | 2.0386 |
1.4296 | 106100 | 1.9658 |
1.4309 | 106200 | 2.0754 |
1.4322 | 106300 | 1.2682 |
1.4336 | 106400 | 1.7468 |
1.4349 | 106500 | 1.5854 |
1.4363 | 106600 | 1.4202 |
1.4376 | 106700 | 1.3942 |
1.4390 | 106800 | 1.7737 |
1.4403 | 106900 | 1.2561 |
1.4417 | 107000 | 1.9416 |
1.4430 | 107100 | 1.9931 |
1.4444 | 107200 | 1.7395 |
1.4457 | 107300 | 1.6517 |
1.4471 | 107400 | 1.1001 |
1.4484 | 107500 | 1.9577 |
1.4498 | 107600 | 1.7326 |
1.4511 | 107700 | 1.8625 |
1.4525 | 107800 | 1.713 |
1.4538 | 107900 | 1.5344 |
1.4552 | 108000 | 1.6243 |
1.4565 | 108100 | 1.4919 |
1.4578 | 108200 | 1.5006 |
1.4592 | 108300 | 1.0809 |
1.4605 | 108400 | 2.1561 |
1.4619 | 108500 | 1.4558 |
1.4632 | 108600 | 1.5179 |
1.4646 | 108700 | 1.3773 |
1.4659 | 108800 | 1.474 |
1.4673 | 108900 | 1.9409 |
1.4686 | 109000 | 1.7273 |
1.4700 | 109100 | 1.5621 |
1.4713 | 109200 | 1.2836 |
1.4727 | 109300 | 1.5104 |
1.4740 | 109400 | 1.2378 |
1.4754 | 109500 | 1.6953 |
1.4767 | 109600 | 1.9938 |
1.4781 | 109700 | 1.4626 |
1.4794 | 109800 | 1.709 |
1.4808 | 109900 | 1.6221 |
1.4821 | 110000 | 1.9676 |
1.4834 | 110100 | 1.6273 |
1.4848 | 110200 | 1.2981 |
1.4861 | 110300 | 1.541 |
1.4875 | 110400 | 1.4703 |
1.4888 | 110500 | 1.8536 |
1.4902 | 110600 | 1.7281 |
1.4915 | 110700 | 1.8766 |
1.4929 | 110800 | 1.6528 |
1.4942 | 110900 | 1.218 |
1.4956 | 111000 | 1.2898 |
1.4969 | 111100 | 1.3452 |
1.4983 | 111200 | 1.8229 |
1.4996 | 111300 | 1.1862 |
1.5010 | 111400 | 1.6804 |
1.5023 | 111500 | 1.6748 |
1.5037 | 111600 | 1.6363 |
1.5050 | 111700 | 1.5167 |
1.5064 | 111800 | 2.2198 |
1.5077 | 111900 | 1.0652 |
1.5090 | 112000 | 1.5825 |
1.5104 | 112100 | 2.1573 |
1.5117 | 112200 | 1.3099 |
1.5131 | 112300 | 1.7038 |
1.5144 | 112400 | 1.4865 |
1.5158 | 112500 | 2.0853 |
1.5171 | 112600 | 1.7619 |
1.5185 | 112700 | 1.8743 |
1.5198 | 112800 | 1.8953 |
1.5212 | 112900 | 1.5148 |
1.5225 | 113000 | 1.6521 |
1.5239 | 113100 | 2.0287 |
1.5252 | 113200 | 1.8012 |
1.5266 | 113300 | 1.1247 |
1.5279 | 113400 | 1.7724 |
1.5293 | 113500 | 2.1853 |
1.5306 | 113600 | 1.2853 |
1.5320 | 113700 | 1.352 |
1.5333 | 113800 | 1.9003 |
1.5346 | 113900 | 1.6962 |
1.5360 | 114000 | 1.3286 |
1.5373 | 114100 | 1.5009 |
1.5387 | 114200 | 1.8231 |
1.5400 | 114300 | 1.6319 |
1.5414 | 114400 | 1.5033 |
1.5427 | 114500 | 1.4697 |
1.5441 | 114600 | 1.5468 |
1.5454 | 114700 | 1.7599 |
1.5468 | 114800 | 1.5572 |
1.5481 | 114900 | 1.6253 |
1.5495 | 115000 | 1.7229 |
1.5508 | 115100 | 1.3799 |
1.5522 | 115200 | 1.5286 |
1.5535 | 115300 | 1.3338 |
1.5549 | 115400 | 1.4199 |
1.5562 | 115500 | 1.4384 |
1.5576 | 115600 | 1.7255 |
1.5589 | 115700 | 1.5644 |
1.5602 | 115800 | 1.5696 |
1.5616 | 115900 | 1.9268 |
1.5629 | 116000 | 1.5231 |
1.5643 | 116100 | 1.6066 |
1.5656 | 116200 | 1.6264 |
1.5670 | 116300 | 1.3553 |
1.5683 | 116400 | 1.7547 |
1.5697 | 116500 | 2.0021 |
1.5710 | 116600 | 1.4245 |
1.5724 | 116700 | 2.0397 |
1.5737 | 116800 | 1.7958 |
1.5751 | 116900 | 2.1313 |
1.5764 | 117000 | 1.6239 |
1.5778 | 117100 | 1.858 |
1.5791 | 117200 | 1.5547 |
1.5805 | 117300 | 1.235 |
1.5818 | 117400 | 1.3374 |
1.5832 | 117500 | 1.4145 |
1.5845 | 117600 | 1.8562 |
1.5858 | 117700 | 1.6566 |
1.5872 | 117800 | 1.4169 |
1.5885 | 117900 | 1.7327 |
1.5899 | 118000 | 1.5307 |
1.5912 | 118100 | 1.7976 |
1.5926 | 118200 | 1.2057 |
1.5939 | 118300 | 1.3177 |
1.5953 | 118400 | 1.6554 |
1.5966 | 118500 | 1.7058 |
1.5980 | 118600 | 1.3839 |
1.5993 | 118700 | 1.2199 |
1.6007 | 118800 | 1.1836 |
1.6020 | 118900 | 1.6226 |
1.6034 | 119000 | 1.9552 |
1.6047 | 119100 | 1.2005 |
1.6061 | 119200 | 1.5903 |
1.6074 | 119300 | 1.5047 |
1.6088 | 119400 | 1.499 |
1.6101 | 119500 | 1.1262 |
1.6114 | 119600 | 2.2492 |
1.6128 | 119700 | 1.2046 |
1.6141 | 119800 | 1.9648 |
1.6155 | 119900 | 1.7029 |
1.6168 | 120000 | 1.7808 |
1.6182 | 120100 | 1.787 |
1.6195 | 120200 | 1.6982 |
1.6209 | 120300 | 1.5131 |
1.6222 | 120400 | 1.7229 |
1.6236 | 120500 | 1.3556 |
1.6249 | 120600 | 1.9729 |
1.6263 | 120700 | 1.5959 |
1.6276 | 120800 | 1.4928 |
1.6290 | 120900 | 1.6249 |
1.6303 | 121000 | 1.4164 |
1.6317 | 121100 | 2.0941 |
1.6330 | 121200 | 1.3584 |
1.6344 | 121300 | 1.8783 |
1.6357 | 121400 | 1.3435 |
1.6370 | 121500 | 1.3914 |
1.6384 | 121600 | 1.7009 |
1.6397 | 121700 | 1.1749 |
1.6411 | 121800 | 1.6401 |
1.6424 | 121900 | 1.893 |
1.6438 | 122000 | 1.305 |
1.6451 | 122100 | 1.3063 |
1.6465 | 122200 | 1.5201 |
1.6478 | 122300 | 1.2591 |
1.6492 | 122400 | 1.7967 |
1.6505 | 122500 | 1.4299 |
1.6519 | 122600 | 1.5752 |
1.6532 | 122700 | 1.5112 |
1.6546 | 122800 | 1.8106 |
1.6559 | 122900 | 1.3184 |
1.6573 | 123000 | 1.3979 |
1.6586 | 123100 | 1.1882 |
1.6600 | 123200 | 1.4188 |
1.6613 | 123300 | 1.897 |
1.6626 | 123400 | 1.5941 |
1.6640 | 123500 | 1.9992 |
1.6653 | 123600 | 1.2469 |
1.6667 | 123700 | 1.4211 |
1.6680 | 123800 | 1.7398 |
1.6694 | 123900 | 1.7558 |
1.6707 | 124000 | 1.2737 |
1.6721 | 124100 | 1.6168 |
1.6734 | 124200 | 1.6744 |
1.6748 | 124300 | 1.7027 |
1.6761 | 124400 | 1.5966 |
1.6775 | 124500 | 1.5876 |
1.6788 | 124600 | 1.5608 |
1.6802 | 124700 | 2.1446 |
1.6815 | 124800 | 1.7975 |
1.6829 | 124900 | 1.9436 |
1.6842 | 125000 | 1.942 |
1.6856 | 125100 | 1.4679 |
1.6869 | 125200 | 1.6186 |
1.6882 | 125300 | 1.7944 |
1.6896 | 125400 | 1.4543 |
1.6909 | 125500 | 1.4701 |
1.6923 | 125600 | 1.82 |
1.6936 | 125700 | 1.325 |
1.6950 | 125800 | 1.4055 |
1.6963 | 125900 | 1.7347 |
1.6977 | 126000 | 1.5435 |
1.6990 | 126100 | 1.6918 |
1.7004 | 126200 | 1.5132 |
1.7017 | 126300 | 1.7676 |
1.7031 | 126400 | 1.4455 |
1.7044 | 126500 | 1.7463 |
1.7058 | 126600 | 1.7647 |
1.7071 | 126700 | 1.2679 |
1.7085 | 126800 | 1.6775 |
1.7098 | 126900 | 1.7353 |
1.7112 | 127000 | 1.4454 |
1.7125 | 127100 | 1.3769 |
1.7138 | 127200 | 1.6437 |
1.7152 | 127300 | 1.5347 |
1.7165 | 127400 | 1.4954 |
1.7179 | 127500 | 1.6035 |
1.7192 | 127600 | 1.4155 |
1.7206 | 127700 | 1.5114 |
1.7219 | 127800 | 1.0086 |
1.7233 | 127900 | 1.6472 |
1.7246 | 128000 | 1.3034 |
1.7260 | 128100 | 1.2263 |
1.7273 | 128200 | 1.2132 |
1.7287 | 128300 | 1.7553 |
1.7300 | 128400 | 1.6663 |
1.7314 | 128500 | 1.7534 |
1.7327 | 128600 | 1.4902 |
1.7341 | 128700 | 1.5908 |
1.7354 | 128800 | 1.5938 |
1.7368 | 128900 | 1.3085 |
1.7381 | 129000 | 1.9479 |
1.7394 | 129100 | 1.3384 |
1.7408 | 129200 | 1.8235 |
1.7421 | 129300 | 1.1016 |
1.7435 | 129400 | 1.5203 |
1.7448 | 129500 | 1.9095 |
1.7462 | 129600 | 1.6981 |
1.7475 | 129700 | 1.7581 |
1.7489 | 129800 | 1.4284 |
1.7502 | 129900 | 1.505 |
1.7516 | 130000 | 1.9087 |
1.7529 | 130100 | 1.5041 |
1.7543 | 130200 | 1.6688 |
1.7556 | 130300 | 1.7098 |
1.7570 | 130400 | 1.8812 |
1.7583 | 130500 | 1.7743 |
1.7597 | 130600 | 1.7902 |
1.7610 | 130700 | 1.834 |
1.7624 | 130800 | 1.8141 |
1.7637 | 130900 | 1.5811 |
1.7650 | 131000 | 1.6987 |
1.7664 | 131100 | 1.7954 |
1.7677 | 131200 | 1.4612 |
1.7691 | 131300 | 1.5317 |
1.7704 | 131400 | 1.3477 |
1.7718 | 131500 | 1.7828 |
1.7731 | 131600 | 2.1168 |
1.7745 | 131700 | 1.5251 |
1.7758 | 131800 | 1.3935 |
1.7772 | 131900 | 1.4564 |
1.7785 | 132000 | 1.7692 |
1.7799 | 132100 | 1.7792 |
1.7812 | 132200 | 1.8703 |
1.7826 | 132300 | 1.4434 |
1.7839 | 132400 | 1.6243 |
1.7853 | 132500 | 1.7519 |
1.7866 | 132600 | 1.8167 |
1.7880 | 132700 | 1.5469 |
1.7893 | 132800 | 1.6512 |
1.7906 | 132900 | 1.3017 |
1.7920 | 133000 | 1.3424 |
1.7933 | 133100 | 1.4329 |
1.7947 | 133200 | 1.1791 |
1.7960 | 133300 | 1.5516 |
1.7974 | 133400 | 1.4913 |
1.7987 | 133500 | 1.4469 |
1.8001 | 133600 | 1.177 |
1.8014 | 133700 | 1.3115 |
1.8028 | 133800 | 1.7379 |
1.8041 | 133900 | 1.3329 |
1.8055 | 134000 | 1.6283 |
1.8068 | 134100 | 1.5019 |
1.8082 | 134200 | 1.5125 |
1.8095 | 134300 | 1.45 |
1.8109 | 134400 | 1.3488 |
1.8122 | 134500 | 1.2128 |
1.8136 | 134600 | 1.2604 |
1.8149 | 134700 | 1.4723 |
1.8162 | 134800 | 1.4218 |
1.8176 | 134900 | 1.2657 |
1.8189 | 135000 | 2.0891 |
1.8203 | 135100 | 1.4758 |
1.8216 | 135200 | 1.2031 |
1.8230 | 135300 | 1.5003 |
1.8243 | 135400 | 1.1243 |
1.8257 | 135500 | 1.6347 |
1.8270 | 135600 | 1.3884 |
1.8284 | 135700 | 1.4571 |
1.8297 | 135800 | 1.5888 |
1.8311 | 135900 | 1.8263 |
1.8324 | 136000 | 1.884 |
1.8338 | 136100 | 1.0704 |
1.8351 | 136200 | 1.5063 |
1.8365 | 136300 | 1.3883 |
1.8378 | 136400 | 1.6448 |
1.8392 | 136500 | 1.6968 |
1.8405 | 136600 | 1.4655 |
1.8418 | 136700 | 2.1945 |
1.8432 | 136800 | 1.5535 |
1.8445 | 136900 | 1.8415 |
1.8459 | 137000 | 1.5415 |
1.8472 | 137100 | 1.5739 |
1.8486 | 137200 | 1.6237 |
1.8499 | 137300 | 1.8467 |
1.8513 | 137400 | 1.5384 |
1.8526 | 137500 | 2.0643 |
1.8540 | 137600 | 1.5304 |
1.8553 | 137700 | 1.3931 |
1.8567 | 137800 | 1.7091 |
1.8580 | 137900 | 1.7951 |
1.8594 | 138000 | 1.4045 |
1.8607 | 138100 | 1.5107 |
1.8621 | 138200 | 1.504 |
1.8634 | 138300 | 1.8333 |
1.8648 | 138400 | 1.388 |
1.8661 | 138500 | 1.6747 |
1.8674 | 138600 | 1.5811 |
1.8688 | 138700 | 0.9687 |
1.8701 | 138800 | 1.8287 |
1.8715 | 138900 | 1.4925 |
1.8728 | 139000 | 2.0032 |
1.8742 | 139100 | 1.749 |
1.8755 | 139200 | 1.2697 |
1.8769 | 139300 | 1.6545 |
1.8782 | 139400 | 1.3993 |
1.8796 | 139500 | 1.2389 |
1.8809 | 139600 | 1.2592 |
1.8823 | 139700 | 1.3851 |
1.8836 | 139800 | 1.5201 |
1.8850 | 139900 | 1.5212 |
1.8863 | 140000 | 1.3385 |
1.8877 | 140100 | 1.3909 |
1.8890 | 140200 | 1.7753 |
1.8904 | 140300 | 1.3581 |
1.8917 | 140400 | 1.7883 |
1.8930 | 140500 | 1.5795 |
1.8944 | 140600 | 2.0231 |
1.8957 | 140700 | 1.6205 |
1.8971 | 140800 | 1.7681 |
1.8984 | 140900 | 1.9825 |
1.8998 | 141000 | 1.8362 |
1.9011 | 141100 | 1.2596 |
1.9025 | 141200 | 1.8202 |
1.9038 | 141300 | 1.5923 |
1.9052 | 141400 | 1.6088 |
1.9065 | 141500 | 1.8636 |
1.9079 | 141600 | 1.3539 |
1.9092 | 141700 | 1.8269 |
1.9106 | 141800 | 1.4569 |
1.9119 | 141900 | 1.3619 |
1.9133 | 142000 | 1.6444 |
1.9146 | 142100 | 1.1433 |
1.9160 | 142200 | 1.7109 |
1.9173 | 142300 | 1.5552 |
1.9186 | 142400 | 1.6076 |
1.9200 | 142500 | 1.8098 |
1.9213 | 142600 | 1.6098 |
1.9227 | 142700 | 1.3428 |
1.9240 | 142800 | 1.8416 |
1.9254 | 142900 | 1.7212 |
1.9267 | 143000 | 1.8468 |
1.9281 | 143100 | 1.5409 |
1.9294 | 143200 | 1.6295 |
1.9308 | 143300 | 1.8112 |
1.9321 | 143400 | 1.3063 |
1.9335 | 143500 | 1.5782 |
1.9348 | 143600 | 1.5314 |
1.9362 | 143700 | 1.2084 |
1.9375 | 143800 | 1.6423 |
1.9389 | 143900 | 1.2447 |
1.9402 | 144000 | 1.0976 |
1.9416 | 144100 | 1.0734 |
1.9429 | 144200 | 1.8122 |
1.9442 | 144300 | 1.5745 |
1.9456 | 144400 | 1.8577 |
1.9469 | 144500 | 2.041 |
1.9483 | 144600 | 1.4208 |
1.9496 | 144700 | 1.243 |
1.9510 | 144800 | 1.6781 |
1.9523 | 144900 | 1.6176 |
1.9537 | 145000 | 1.2095 |
1.9550 | 145100 | 1.2454 |
1.9564 | 145200 | 1.6285 |
1.9577 | 145300 | 1.737 |
1.9591 | 145400 | 1.1004 |
1.9604 | 145500 | 1.3967 |
1.9618 | 145600 | 1.8645 |
1.9631 | 145700 | 1.3151 |
1.9645 | 145800 | 2.1533 |
1.9658 | 145900 | 1.7052 |
1.9672 | 146000 | 1.5864 |
1.9685 | 146100 | 1.1257 |
1.9698 | 146200 | 1.5899 |
1.9712 | 146300 | 1.4375 |
1.9725 | 146400 | 1.5404 |
1.9739 | 146500 | 1.3839 |
1.9752 | 146600 | 1.326 |
1.9766 | 146700 | 1.5772 |
1.9779 | 146800 | 1.7628 |
1.9793 | 146900 | 1.8017 |
1.9806 | 147000 | 1.3599 |
1.9820 | 147100 | 1.1819 |
1.9833 | 147200 | 1.4646 |
1.9847 | 147300 | 1.8529 |
1.9860 | 147400 | 1.4933 |
1.9874 | 147500 | 1.4262 |
1.9887 | 147600 | 1.247 |
1.9901 | 147700 | 1.5074 |
1.9914 | 147800 | 1.5928 |
1.9928 | 147900 | 1.8633 |
1.9941 | 148000 | 1.4895 |
1.9954 | 148100 | 1.6311 |
1.9968 | 148200 | 1.7141 |
1.9981 | 148300 | 1.3199 |
1.9995 | 148400 | 1.2443 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for youssefkhalil320/all-MiniLM-L6-v13-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2