all-MiniLM-L6-v13-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'smart toothbrush',
    'onions vine leaves',
    'crispy cheese sauce casserole',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.8232 61100 2.2627
0.8246 61200 1.8503
0.8259 61300 2.0076
0.8273 61400 1.7956
0.8286 61500 1.5268
0.8300 61600 1.8155
0.8313 61700 2.1089
0.8327 61800 2.4272
0.8340 61900 1.9374
0.8354 62000 1.6402
0.8367 62100 2.4922
0.8381 62200 1.9729
0.8394 62300 1.5534
0.8408 62400 1.7918
0.8421 62500 2.2717
0.8434 62600 2.2199
0.8448 62700 1.7964
0.8461 62800 2.2251
0.8475 62900 2.0824
0.8488 63000 1.647
0.8502 63100 1.5672
0.8515 63200 1.7727
0.8529 63300 1.7529
0.8542 63400 1.3972
0.8556 63500 1.8951
0.8569 63600 1.7989
0.8583 63700 1.5449
0.8596 63800 1.9917
0.8610 63900 1.8591
0.8623 64000 1.9657
0.8637 64100 2.2015
0.8650 64200 1.8189
0.8664 64300 1.9765
0.8677 64400 1.8208
0.8690 64500 2.007
0.8704 64600 2.181
0.8717 64700 2.2569
0.8731 64800 1.6881
0.8744 64900 1.7391
0.8758 65000 2.0425
0.8771 65100 1.7074
0.8785 65200 1.9264
0.8798 65300 1.6291
0.8812 65400 1.7177
0.8825 65500 1.5505
0.8839 65600 2.1976
0.8852 65700 1.7166
0.8866 65800 1.623
0.8879 65900 1.8934
0.8893 66000 1.5433
0.8906 66100 2.303
0.8920 66200 2.0442
0.8933 66300 1.9883
0.8946 66400 1.7443
0.8960 66500 1.8812
0.8973 66600 1.872
0.8987 66700 1.826
0.9000 66800 1.9124
0.9014 66900 2.1901
0.9027 67000 1.8261
0.9041 67100 1.8076
0.9054 67200 1.9869
0.9068 67300 1.7586
0.9081 67400 1.6167
0.9095 67500 2.0103
0.9108 67600 1.9229
0.9122 67700 1.7532
0.9135 67800 1.8408
0.9149 67900 1.4797
0.9162 68000 1.818
0.9176 68100 1.6391
0.9189 68200 1.6242
0.9202 68300 1.639
0.9216 68400 2.0135
0.9229 68500 1.8024
0.9243 68600 1.8188
0.9256 68700 1.556
0.9270 68800 1.7777
0.9283 68900 1.6406
0.9297 69000 1.5881
0.9310 69100 2.0322
0.9324 69200 1.8145
0.9337 69300 2.0887
0.9351 69400 1.5552
0.9364 69500 1.7682
0.9378 69600 2.1938
0.9391 69700 2.1021
0.9405 69800 1.6815
0.9418 69900 1.6488
0.9432 70000 1.9412
0.9445 70100 1.765
0.9458 70200 2.0429
0.9472 70300 1.9302
0.9485 70400 2.0909
0.9499 70500 1.6209
0.9512 70600 2.203
0.9526 70700 1.9052
0.9539 70800 2.2339
0.9553 70900 1.8504
0.9566 71000 1.9318
0.9580 71100 1.5013
0.9593 71200 2.0928
0.9607 71300 1.8393
0.9620 71400 1.9516
0.9634 71500 1.8203
0.9647 71600 1.9596
0.9661 71700 2.0126
0.9674 71800 1.5654
0.9688 71900 1.7494
0.9701 72000 1.675
0.9714 72100 1.9596
0.9728 72200 1.8531
0.9741 72300 1.695
0.9755 72400 1.98
0.9768 72500 1.6654
0.9782 72600 1.4514
0.9795 72700 1.669
0.9809 72800 1.5103
0.9822 72900 1.5932
0.9836 73000 1.9951
0.9849 73100 1.6629
0.9863 73200 1.6346
0.9876 73300 1.7458
0.9890 73400 1.5405
0.9903 73500 2.2183
0.9917 73600 2.4572
0.9930 73700 1.6371
0.9944 73800 1.9842
0.9957 73900 1.642
0.9970 74000 1.8484
0.9984 74100 1.6463
0.9997 74200 1.7123
1.0011 74300 1.4431
1.0024 74400 2.0678
1.0038 74500 1.5143
1.0051 74600 1.6055
1.0065 74700 1.5292
1.0078 74800 2.052
1.0092 74900 1.9049
1.0105 75000 1.6666
1.0119 75100 1.7374
1.0132 75200 1.5201
1.0146 75300 1.6994
1.0159 75400 1.8111
1.0173 75500 1.9701
1.0186 75600 1.7418
1.0200 75700 1.4604
1.0213 75800 1.8545
1.0226 75900 1.487
1.0240 76000 1.9216
1.0253 76100 1.2685
1.0267 76200 1.6035
1.0280 76300 1.5329
1.0294 76400 1.7169
1.0307 76500 1.4756
1.0321 76600 1.4021
1.0334 76700 1.7533
1.0348 76800 2.3071
1.0361 76900 1.8261
1.0375 77000 2.1211
1.0388 77100 1.9237
1.0402 77200 1.7846
1.0415 77300 1.5664
1.0429 77400 1.8463
1.0442 77500 1.7455
1.0456 77600 1.7717
1.0469 77700 1.6028
1.0482 77800 2.3449
1.0496 77900 1.7559
1.0509 78000 2.3763
1.0523 78100 1.844
1.0536 78200 1.5563
1.0550 78300 1.7808
1.0563 78400 2.0689
1.0577 78500 1.3285
1.0590 78600 1.5348
1.0604 78700 2.4918
1.0617 78800 2.2498
1.0631 78900 1.8905
1.0644 79000 1.8463
1.0658 79100 1.7168
1.0671 79200 2.215
1.0685 79300 1.5194
1.0698 79400 1.6528
1.0712 79500 1.7271
1.0725 79600 1.8336
1.0738 79700 1.6057
1.0752 79800 1.6951
1.0765 79900 1.811
1.0779 80000 1.8606
1.0792 80100 1.6004
1.0806 80200 1.9454
1.0819 80300 1.9395
1.0833 80400 1.5483
1.0846 80500 1.6592
1.0860 80600 1.7823
1.0873 80700 1.6464
1.0887 80800 1.7621
1.0900 80900 1.9007
1.0914 81000 1.817
1.0927 81100 1.8079
1.0941 81200 1.793
1.0954 81300 1.775
1.0968 81400 1.8482
1.0981 81500 2.1591
1.0994 81600 1.8745
1.1008 81700 1.5664
1.1021 81800 2.0571
1.1035 81900 1.5686
1.1048 82000 1.847
1.1062 82100 1.6045
1.1075 82200 1.2121
1.1089 82300 1.5535
1.1102 82400 1.7324
1.1116 82500 1.5164
1.1129 82600 1.6282
1.1143 82700 1.8102
1.1156 82800 1.39
1.1170 82900 1.8485
1.1183 83000 1.977
1.1197 83100 1.6974
1.1210 83200 2.0346
1.1224 83300 1.418
1.1237 83400 2.2979
1.1250 83500 2.3943
1.1264 83600 1.651
1.1277 83700 1.6725
1.1291 83800 1.6154
1.1304 83900 1.6627
1.1318 84000 1.8559
1.1331 84100 1.7952
1.1345 84200 1.7902
1.1358 84300 1.9019
1.1372 84400 1.4513
1.1385 84500 1.7438
1.1399 84600 1.5009
1.1412 84700 1.6993
1.1426 84800 1.6195
1.1439 84900 1.4334
1.1453 85000 1.5223
1.1466 85100 1.6166
1.1480 85200 1.8966
1.1493 85300 1.7093
1.1506 85400 1.3838
1.1520 85500 1.7472
1.1533 85600 1.4164
1.1547 85700 1.233
1.1560 85800 1.4688
1.1574 85900 1.4373
1.1587 86000 1.491
1.1601 86100 2.102
1.1614 86200 2.1561
1.1628 86300 1.4177
1.1641 86400 1.5393
1.1655 86500 1.6477
1.1668 86600 2.3109
1.1682 86700 1.5485
1.1695 86800 1.5293
1.1709 86900 1.6376
1.1722 87000 1.5661
1.1736 87100 1.6482
1.1749 87200 1.7779
1.1762 87300 1.3775
1.1776 87400 1.6072
1.1789 87500 1.3095
1.1803 87600 1.4503
1.1816 87700 1.4568
1.1830 87800 1.4942
1.1843 87900 1.5583
1.1857 88000 1.7898
1.1870 88100 1.7546
1.1884 88200 1.205
1.1897 88300 1.9065
1.1911 88400 2.0353
1.1924 88500 1.7578
1.1938 88600 1.8053
1.1951 88700 1.3341
1.1965 88800 2.0699
1.1978 88900 1.8514
1.1992 89000 1.9375
1.2005 89100 1.845
1.2018 89200 1.3934
1.2032 89300 1.4777
1.2045 89400 1.5636
1.2059 89500 1.7731
1.2072 89600 1.4624
1.2086 89700 1.7582
1.2099 89800 1.4571
1.2113 89900 1.6627
1.2126 90000 1.3795
1.2140 90100 2.2098
1.2153 90200 1.417
1.2167 90300 1.3832
1.2180 90400 1.7651
1.2194 90500 1.8122
1.2207 90600 1.5503
1.2221 90700 2.2202
1.2234 90800 1.593
1.2248 90900 1.5671
1.2261 91000 1.6143
1.2274 91100 1.9637
1.2288 91200 1.4438
1.2301 91300 1.9687
1.2315 91400 1.7887
1.2328 91500 1.7756
1.2342 91600 1.4491
1.2355 91700 2.2564
1.2369 91800 1.4821
1.2382 91900 1.5253
1.2396 92000 1.5747
1.2409 92100 1.1671
1.2423 92200 1.9347
1.2436 92300 1.6319
1.2450 92400 2.3654
1.2463 92500 1.537
1.2477 92600 1.5141
1.2490 92700 1.9275
1.2504 92800 1.8062
1.2517 92900 1.7132
1.2530 93000 2.4315
1.2544 93100 1.1016
1.2557 93200 1.6248
1.2571 93300 2.2185
1.2584 93400 1.4869
1.2598 93500 1.7578
1.2611 93600 1.3692
1.2625 93700 2.2538
1.2638 93800 1.4158
1.2652 93900 1.4309
1.2665 94000 2.036
1.2679 94100 1.5315
1.2692 94200 1.2562
1.2706 94300 1.4589
1.2719 94400 1.4579
1.2733 94500 1.3806
1.2746 94600 1.4328
1.2760 94700 1.3881
1.2773 94800 1.6977
1.2786 94900 1.9541
1.2800 95000 1.8359
1.2813 95100 1.4229
1.2827 95200 1.3777
1.2840 95300 1.486
1.2854 95400 1.5093
1.2867 95500 1.6792
1.2881 95600 2.0964
1.2894 95700 1.9592
1.2908 95800 1.8839
1.2921 95900 1.8193
1.2935 96000 1.2074
1.2948 96100 1.5
1.2962 96200 1.6936
1.2975 96300 1.2643
1.2989 96400 1.7983
1.3002 96500 1.9845
1.3016 96600 1.97
1.3029 96700 1.824
1.3042 96800 1.8034
1.3056 96900 1.6887
1.3069 97000 1.9653
1.3083 97100 2.0337
1.3096 97200 1.9934
1.3110 97300 1.5434
1.3123 97400 1.8976
1.3137 97500 1.6114
1.3150 97600 1.7799
1.3164 97700 2.1148
1.3177 97800 1.6252
1.3191 97900 2.1435
1.3204 98000 1.7719
1.3218 98100 1.8351
1.3231 98200 1.3329
1.3245 98300 1.9484
1.3258 98400 1.9758
1.3272 98500 1.2146
1.3285 98600 1.4158
1.3298 98700 1.6679
1.3312 98800 1.9363
1.3325 98900 1.4793
1.3339 99000 1.257
1.3352 99100 1.9477
1.3366 99200 1.603
1.3379 99300 1.4738
1.3393 99400 1.6832
1.3406 99500 1.6934
1.3420 99600 1.715
1.3433 99700 1.4162
1.3447 99800 1.7815
1.3460 99900 1.9255
1.3474 100000 1.5564
1.3487 100100 1.7694
1.3501 100200 1.7545
1.3514 100300 1.3728
1.3528 100400 1.5254
1.3541 100500 1.7833
1.3554 100600 1.7485
1.3568 100700 1.8016
1.3581 100800 1.7602
1.3595 100900 2.0944
1.3608 101000 1.6225
1.3622 101100 1.8505
1.3635 101200 1.5885
1.3649 101300 1.6147
1.3662 101400 1.6244
1.3676 101500 1.9271
1.3689 101600 1.4003
1.3703 101700 1.9319
1.3716 101800 1.4809
1.3730 101900 1.4683
1.3743 102000 1.8048
1.3757 102100 1.658
1.3770 102200 1.4604
1.3784 102300 1.6056
1.3797 102400 1.4837
1.3810 102500 1.7507
1.3824 102600 1.4528
1.3837 102700 1.7623
1.3851 102800 1.6916
1.3864 102900 1.0608
1.3878 103000 1.2387
1.3891 103100 1.3267
1.3905 103200 1.7035
1.3918 103300 1.9545
1.3932 103400 1.4143
1.3945 103500 1.9986
1.3959 103600 1.5485
1.3972 103700 1.6946
1.3986 103800 1.4163
1.3999 103900 1.7001
1.4013 104000 1.8313
1.4026 104100 1.6345
1.4040 104200 2.0902
1.4053 104300 1.6568
1.4066 104400 2.1615
1.4080 104500 2.0037
1.4093 104600 1.702
1.4107 104700 1.5521
1.4120 104800 1.5274
1.4134 104900 1.431
1.4147 105000 1.7616
1.4161 105100 1.6825
1.4174 105200 1.6137
1.4188 105300 1.8515
1.4201 105400 1.7499
1.4215 105500 1.8541
1.4228 105600 1.7024
1.4242 105700 1.545
1.4255 105800 1.7382
1.4269 105900 1.7512
1.4282 106000 2.0386
1.4296 106100 1.9658
1.4309 106200 2.0754
1.4322 106300 1.2682
1.4336 106400 1.7468
1.4349 106500 1.5854
1.4363 106600 1.4202
1.4376 106700 1.3942
1.4390 106800 1.7737
1.4403 106900 1.2561
1.4417 107000 1.9416
1.4430 107100 1.9931
1.4444 107200 1.7395
1.4457 107300 1.6517
1.4471 107400 1.1001
1.4484 107500 1.9577
1.4498 107600 1.7326
1.4511 107700 1.8625
1.4525 107800 1.713
1.4538 107900 1.5344
1.4552 108000 1.6243
1.4565 108100 1.4919
1.4578 108200 1.5006
1.4592 108300 1.0809
1.4605 108400 2.1561
1.4619 108500 1.4558
1.4632 108600 1.5179
1.4646 108700 1.3773
1.4659 108800 1.474
1.4673 108900 1.9409
1.4686 109000 1.7273
1.4700 109100 1.5621
1.4713 109200 1.2836
1.4727 109300 1.5104
1.4740 109400 1.2378
1.4754 109500 1.6953
1.4767 109600 1.9938
1.4781 109700 1.4626
1.4794 109800 1.709
1.4808 109900 1.6221
1.4821 110000 1.9676
1.4834 110100 1.6273
1.4848 110200 1.2981
1.4861 110300 1.541
1.4875 110400 1.4703
1.4888 110500 1.8536
1.4902 110600 1.7281
1.4915 110700 1.8766
1.4929 110800 1.6528
1.4942 110900 1.218
1.4956 111000 1.2898
1.4969 111100 1.3452
1.4983 111200 1.8229
1.4996 111300 1.1862
1.5010 111400 1.6804
1.5023 111500 1.6748
1.5037 111600 1.6363
1.5050 111700 1.5167
1.5064 111800 2.2198
1.5077 111900 1.0652
1.5090 112000 1.5825
1.5104 112100 2.1573
1.5117 112200 1.3099
1.5131 112300 1.7038
1.5144 112400 1.4865
1.5158 112500 2.0853
1.5171 112600 1.7619
1.5185 112700 1.8743
1.5198 112800 1.8953
1.5212 112900 1.5148
1.5225 113000 1.6521
1.5239 113100 2.0287
1.5252 113200 1.8012
1.5266 113300 1.1247
1.5279 113400 1.7724
1.5293 113500 2.1853
1.5306 113600 1.2853
1.5320 113700 1.352
1.5333 113800 1.9003
1.5346 113900 1.6962
1.5360 114000 1.3286
1.5373 114100 1.5009
1.5387 114200 1.8231
1.5400 114300 1.6319
1.5414 114400 1.5033
1.5427 114500 1.4697
1.5441 114600 1.5468
1.5454 114700 1.7599
1.5468 114800 1.5572
1.5481 114900 1.6253
1.5495 115000 1.7229
1.5508 115100 1.3799
1.5522 115200 1.5286
1.5535 115300 1.3338
1.5549 115400 1.4199
1.5562 115500 1.4384
1.5576 115600 1.7255
1.5589 115700 1.5644
1.5602 115800 1.5696
1.5616 115900 1.9268
1.5629 116000 1.5231
1.5643 116100 1.6066
1.5656 116200 1.6264
1.5670 116300 1.3553
1.5683 116400 1.7547
1.5697 116500 2.0021
1.5710 116600 1.4245
1.5724 116700 2.0397
1.5737 116800 1.7958
1.5751 116900 2.1313
1.5764 117000 1.6239
1.5778 117100 1.858
1.5791 117200 1.5547
1.5805 117300 1.235
1.5818 117400 1.3374
1.5832 117500 1.4145
1.5845 117600 1.8562
1.5858 117700 1.6566
1.5872 117800 1.4169
1.5885 117900 1.7327
1.5899 118000 1.5307
1.5912 118100 1.7976
1.5926 118200 1.2057
1.5939 118300 1.3177
1.5953 118400 1.6554
1.5966 118500 1.7058
1.5980 118600 1.3839
1.5993 118700 1.2199
1.6007 118800 1.1836
1.6020 118900 1.6226
1.6034 119000 1.9552
1.6047 119100 1.2005
1.6061 119200 1.5903
1.6074 119300 1.5047
1.6088 119400 1.499
1.6101 119500 1.1262
1.6114 119600 2.2492
1.6128 119700 1.2046
1.6141 119800 1.9648
1.6155 119900 1.7029
1.6168 120000 1.7808
1.6182 120100 1.787
1.6195 120200 1.6982
1.6209 120300 1.5131
1.6222 120400 1.7229
1.6236 120500 1.3556
1.6249 120600 1.9729
1.6263 120700 1.5959
1.6276 120800 1.4928
1.6290 120900 1.6249
1.6303 121000 1.4164
1.6317 121100 2.0941
1.6330 121200 1.3584
1.6344 121300 1.8783
1.6357 121400 1.3435
1.6370 121500 1.3914
1.6384 121600 1.7009
1.6397 121700 1.1749
1.6411 121800 1.6401
1.6424 121900 1.893
1.6438 122000 1.305
1.6451 122100 1.3063
1.6465 122200 1.5201
1.6478 122300 1.2591
1.6492 122400 1.7967
1.6505 122500 1.4299
1.6519 122600 1.5752
1.6532 122700 1.5112
1.6546 122800 1.8106
1.6559 122900 1.3184
1.6573 123000 1.3979
1.6586 123100 1.1882
1.6600 123200 1.4188
1.6613 123300 1.897
1.6626 123400 1.5941
1.6640 123500 1.9992
1.6653 123600 1.2469
1.6667 123700 1.4211
1.6680 123800 1.7398
1.6694 123900 1.7558
1.6707 124000 1.2737
1.6721 124100 1.6168
1.6734 124200 1.6744
1.6748 124300 1.7027
1.6761 124400 1.5966
1.6775 124500 1.5876
1.6788 124600 1.5608
1.6802 124700 2.1446
1.6815 124800 1.7975
1.6829 124900 1.9436
1.6842 125000 1.942
1.6856 125100 1.4679
1.6869 125200 1.6186
1.6882 125300 1.7944
1.6896 125400 1.4543
1.6909 125500 1.4701
1.6923 125600 1.82
1.6936 125700 1.325
1.6950 125800 1.4055
1.6963 125900 1.7347
1.6977 126000 1.5435
1.6990 126100 1.6918
1.7004 126200 1.5132
1.7017 126300 1.7676
1.7031 126400 1.4455
1.7044 126500 1.7463
1.7058 126600 1.7647
1.7071 126700 1.2679
1.7085 126800 1.6775
1.7098 126900 1.7353
1.7112 127000 1.4454
1.7125 127100 1.3769
1.7138 127200 1.6437
1.7152 127300 1.5347
1.7165 127400 1.4954
1.7179 127500 1.6035
1.7192 127600 1.4155
1.7206 127700 1.5114
1.7219 127800 1.0086
1.7233 127900 1.6472
1.7246 128000 1.3034
1.7260 128100 1.2263
1.7273 128200 1.2132
1.7287 128300 1.7553
1.7300 128400 1.6663
1.7314 128500 1.7534
1.7327 128600 1.4902
1.7341 128700 1.5908
1.7354 128800 1.5938
1.7368 128900 1.3085
1.7381 129000 1.9479
1.7394 129100 1.3384
1.7408 129200 1.8235
1.7421 129300 1.1016
1.7435 129400 1.5203
1.7448 129500 1.9095
1.7462 129600 1.6981
1.7475 129700 1.7581
1.7489 129800 1.4284
1.7502 129900 1.505
1.7516 130000 1.9087
1.7529 130100 1.5041
1.7543 130200 1.6688
1.7556 130300 1.7098
1.7570 130400 1.8812
1.7583 130500 1.7743
1.7597 130600 1.7902
1.7610 130700 1.834
1.7624 130800 1.8141
1.7637 130900 1.5811
1.7650 131000 1.6987
1.7664 131100 1.7954
1.7677 131200 1.4612
1.7691 131300 1.5317
1.7704 131400 1.3477
1.7718 131500 1.7828
1.7731 131600 2.1168
1.7745 131700 1.5251
1.7758 131800 1.3935
1.7772 131900 1.4564
1.7785 132000 1.7692
1.7799 132100 1.7792
1.7812 132200 1.8703
1.7826 132300 1.4434
1.7839 132400 1.6243
1.7853 132500 1.7519
1.7866 132600 1.8167
1.7880 132700 1.5469
1.7893 132800 1.6512
1.7906 132900 1.3017
1.7920 133000 1.3424
1.7933 133100 1.4329
1.7947 133200 1.1791
1.7960 133300 1.5516
1.7974 133400 1.4913
1.7987 133500 1.4469
1.8001 133600 1.177
1.8014 133700 1.3115
1.8028 133800 1.7379
1.8041 133900 1.3329
1.8055 134000 1.6283
1.8068 134100 1.5019
1.8082 134200 1.5125
1.8095 134300 1.45
1.8109 134400 1.3488
1.8122 134500 1.2128
1.8136 134600 1.2604
1.8149 134700 1.4723
1.8162 134800 1.4218
1.8176 134900 1.2657
1.8189 135000 2.0891
1.8203 135100 1.4758
1.8216 135200 1.2031
1.8230 135300 1.5003
1.8243 135400 1.1243
1.8257 135500 1.6347
1.8270 135600 1.3884
1.8284 135700 1.4571
1.8297 135800 1.5888
1.8311 135900 1.8263
1.8324 136000 1.884
1.8338 136100 1.0704
1.8351 136200 1.5063
1.8365 136300 1.3883
1.8378 136400 1.6448
1.8392 136500 1.6968
1.8405 136600 1.4655
1.8418 136700 2.1945
1.8432 136800 1.5535
1.8445 136900 1.8415
1.8459 137000 1.5415
1.8472 137100 1.5739
1.8486 137200 1.6237
1.8499 137300 1.8467
1.8513 137400 1.5384
1.8526 137500 2.0643
1.8540 137600 1.5304
1.8553 137700 1.3931
1.8567 137800 1.7091
1.8580 137900 1.7951
1.8594 138000 1.4045
1.8607 138100 1.5107
1.8621 138200 1.504
1.8634 138300 1.8333
1.8648 138400 1.388
1.8661 138500 1.6747
1.8674 138600 1.5811
1.8688 138700 0.9687
1.8701 138800 1.8287
1.8715 138900 1.4925
1.8728 139000 2.0032
1.8742 139100 1.749
1.8755 139200 1.2697
1.8769 139300 1.6545
1.8782 139400 1.3993
1.8796 139500 1.2389
1.8809 139600 1.2592
1.8823 139700 1.3851
1.8836 139800 1.5201
1.8850 139900 1.5212
1.8863 140000 1.3385
1.8877 140100 1.3909
1.8890 140200 1.7753
1.8904 140300 1.3581
1.8917 140400 1.7883
1.8930 140500 1.5795
1.8944 140600 2.0231
1.8957 140700 1.6205
1.8971 140800 1.7681
1.8984 140900 1.9825
1.8998 141000 1.8362
1.9011 141100 1.2596
1.9025 141200 1.8202
1.9038 141300 1.5923
1.9052 141400 1.6088
1.9065 141500 1.8636
1.9079 141600 1.3539
1.9092 141700 1.8269
1.9106 141800 1.4569
1.9119 141900 1.3619
1.9133 142000 1.6444
1.9146 142100 1.1433
1.9160 142200 1.7109
1.9173 142300 1.5552
1.9186 142400 1.6076
1.9200 142500 1.8098
1.9213 142600 1.6098
1.9227 142700 1.3428
1.9240 142800 1.8416
1.9254 142900 1.7212
1.9267 143000 1.8468
1.9281 143100 1.5409
1.9294 143200 1.6295
1.9308 143300 1.8112
1.9321 143400 1.3063
1.9335 143500 1.5782
1.9348 143600 1.5314
1.9362 143700 1.2084
1.9375 143800 1.6423
1.9389 143900 1.2447
1.9402 144000 1.0976
1.9416 144100 1.0734
1.9429 144200 1.8122
1.9442 144300 1.5745
1.9456 144400 1.8577
1.9469 144500 2.041
1.9483 144600 1.4208
1.9496 144700 1.243
1.9510 144800 1.6781
1.9523 144900 1.6176
1.9537 145000 1.2095
1.9550 145100 1.2454
1.9564 145200 1.6285
1.9577 145300 1.737
1.9591 145400 1.1004
1.9604 145500 1.3967
1.9618 145600 1.8645
1.9631 145700 1.3151
1.9645 145800 2.1533
1.9658 145900 1.7052
1.9672 146000 1.5864
1.9685 146100 1.1257
1.9698 146200 1.5899
1.9712 146300 1.4375
1.9725 146400 1.5404
1.9739 146500 1.3839
1.9752 146600 1.326
1.9766 146700 1.5772
1.9779 146800 1.7628
1.9793 146900 1.8017
1.9806 147000 1.3599
1.9820 147100 1.1819
1.9833 147200 1.4646
1.9847 147300 1.8529
1.9860 147400 1.4933
1.9874 147500 1.4262
1.9887 147600 1.247
1.9901 147700 1.5074
1.9914 147800 1.5928
1.9928 147900 1.8633
1.9941 148000 1.4895
1.9954 148100 1.6311
1.9968 148200 1.7141
1.9981 148300 1.3199
1.9995 148400 1.2443

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
4
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for youssefkhalil320/all-MiniLM-L6-v13-pair_score

Finetuned
(451)
this model