all-MiniLM-L6-v14-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'dairy',
    'skin friendly pillow',
    'buffalo chicken wrap',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0015 100 12.9406
0.0029 200 13.027
0.0044 300 12.8584
0.0058 400 12.6457
0.0073 500 12.1326
0.0087 600 11.7892
0.0102 700 11.2976
0.0116 800 10.706
0.0131 900 10.3948
0.0145 1000 10.0428
0.0160 1100 9.6988
0.0174 1200 9.4399
0.0189 1300 9.1479
0.0203 1400 8.9207
0.0218 1500 8.7778
0.0232 1600 8.6608
0.0247 1700 8.5816
0.0261 1800 8.55
0.0276 1900 8.5003
0.0290 2000 8.456
0.0305 2100 8.4379
0.0319 2200 8.4153
0.0334 2300 8.3954
0.0348 2400 8.3459
0.0363 2500 8.3365
0.0377 2600 8.3115
0.0392 2700 8.3084
0.0406 2800 8.2934
0.0421 2900 8.2832
0.0435 3000 8.2491
0.0450 3100 8.2603
0.0464 3200 8.2336
0.0479 3300 8.2284
0.0493 3400 8.2076
0.0508 3500 8.1885
0.0522 3600 8.1841
0.0537 3700 8.1657
0.0551 3800 8.1536
0.0566 3900 8.1488
0.0580 4000 8.1358
0.0595 4100 8.1406
0.0609 4200 8.1137
0.0624 4300 8.0979
0.0638 4400 8.0989
0.0653 4500 8.0916
0.0667 4600 8.0883
0.0682 4700 8.0796
0.0696 4800 8.0664
0.0711 4900 8.0758
0.0725 5000 8.0426
0.0740 5100 8.0331
0.0754 5200 8.028
0.0769 5300 8.0121
0.0783 5400 8.0181
0.0798 5500 8.003
0.0812 5600 7.9839
0.0827 5700 7.9794
0.0841 5800 7.9759
0.0856 5900 7.9925
0.0870 6000 7.9562
0.0885 6100 7.955
0.0899 6200 7.9578
0.0914 6300 7.9442
0.0928 6400 7.9483
0.0943 6500 7.9367
0.0957 6600 7.9424
0.0972 6700 7.9209
0.0987 6800 7.9181
0.1001 6900 7.9222
0.1016 7000 7.8964
0.1030 7100 7.8958
0.1045 7200 7.9098
0.1059 7300 7.897
0.1074 7400 7.8894
0.1088 7500 7.8862
0.1103 7600 7.8865
0.1117 7700 7.8917
0.1132 7800 7.8639
0.1146 7900 7.8646
0.1161 8000 7.8457
0.1175 8100 7.8574
0.1190 8200 7.8287
0.1204 8300 7.8463
0.1219 8400 7.819
0.1233 8500 7.8371
0.1248 8600 7.8367
0.1262 8700 7.8456
0.1277 8800 7.8578
0.1291 8900 7.8425
0.1306 9000 7.8096
0.1320 9100 7.8155
0.1335 9200 7.8122
0.1349 9300 7.8258
0.1364 9400 7.8128
0.1378 9500 7.7965
0.1393 9600 7.809
0.1407 9700 7.808
0.1422 9800 7.7918
0.1436 9900 7.7808
0.1451 10000 7.8129
0.1465 10100 7.7965
0.1480 10200 7.8247
0.1494 10300 7.7543
0.1509 10400 7.7307
0.1523 10500 7.7668
0.1538 10600 7.7702
0.1552 10700 7.7495
0.1567 10800 7.7934
0.1581 10900 7.778
0.1596 11000 7.7771
0.1610 11100 7.7355
0.1625 11200 7.7789
0.1639 11300 7.7446
0.1654 11400 7.748
0.1668 11500 7.7257
0.1683 11600 7.7399
0.1697 11700 7.7376
0.1712 11800 7.7711
0.1726 11900 7.7468
0.1741 12000 7.7259
0.1755 12100 7.7487
0.1770 12200 7.7229
0.1784 12300 7.729
0.1799 12400 7.7232
0.1813 12500 7.7284
0.1828 12600 7.6793
0.1842 12700 7.7303
0.1857 12800 7.7034
0.1871 12900 7.6668
0.1886 13000 7.701
0.1900 13100 7.7131
0.1915 13200 7.7077
0.1929 13300 7.7129
0.1944 13400 7.6667
0.1959 13500 7.6999
0.1973 13600 7.6799
0.1988 13700 7.6938
0.2002 13800 7.7075
0.2017 13900 7.6991
0.2031 14000 7.6632
0.2046 14100 7.7059
0.2060 14200 7.6471
0.2075 14300 7.6685
0.2089 14400 7.6488
0.2104 14500 7.6874
0.2118 14600 7.6092
0.2133 14700 7.6431
0.2147 14800 7.6521
0.2162 14900 7.6505
0.2176 15000 7.6623
0.2191 15100 7.6357
0.2205 15200 7.6516
0.2220 15300 7.6428
0.2234 15400 7.6568
0.2249 15500 7.6009
0.2263 15600 7.6283
0.2278 15700 7.6743
0.2292 15800 7.5994
0.2307 15900 7.6297
0.2321 16000 7.592
0.2336 16100 7.6743
0.2350 16200 7.6259
0.2365 16300 7.6712
0.2379 16400 7.6315
0.2394 16500 7.6354
0.2408 16600 7.6264
0.2423 16700 7.6081
0.2437 16800 7.5909
0.2452 16900 7.6496
0.2466 17000 7.6705
0.2481 17100 7.6123
0.2495 17200 7.6821
0.2510 17300 7.6372
0.2524 17400 7.5777
0.2539 17500 7.638
0.2553 17600 7.5781
0.2568 17700 7.5609
0.2582 17800 7.5568
0.2597 17900 7.5951
0.2611 18000 7.6402
0.2626 18100 7.5634
0.2640 18200 7.6002
0.2655 18300 7.5669
0.2669 18400 7.574
0.2684 18500 7.6219
0.2698 18600 7.6058
0.2713 18700 7.5758
0.2727 18800 7.5767
0.2742 18900 7.5452
0.2756 19000 7.6406
0.2771 19100 7.5696
0.2785 19200 7.5664
0.2800 19300 7.6273
0.2814 19400 7.6133
0.2829 19500 7.5644
0.2843 19600 7.5973
0.2858 19700 7.5684
0.2872 19800 7.5193
0.2887 19900 7.5996
0.2901 20000 7.5662
0.2916 20100 7.5331
0.2931 20200 7.5992
0.2945 20300 7.5827
0.2960 20400 7.552
0.2974 20500 7.5793
0.2989 20600 7.5121
0.3003 20700 7.5638
0.3018 20800 7.5504
0.3032 20900 7.54
0.3047 21000 7.5766
0.3061 21100 7.5888
0.3076 21200 7.5454
0.3090 21300 7.5391
0.3105 21400 7.5666
0.3119 21500 7.4972
0.3134 21600 7.6144
0.3148 21700 7.5124
0.3163 21800 7.5458
0.3177 21900 7.5365
0.3192 22000 7.488
0.3206 22100 7.5424
0.3221 22200 7.561
0.3235 22300 7.6308
0.3250 22400 7.5842
0.3264 22500 7.5235
0.3279 22600 7.505
0.3293 22700 7.5246
0.3308 22800 7.5501
0.3322 22900 7.4736
0.3337 23000 7.5956
0.3351 23100 7.5274
0.3366 23200 7.5526
0.3380 23300 7.5847
0.3395 23400 7.5554
0.3409 23500 7.5043
0.3424 23600 7.6002
0.3438 23700 7.5239
0.3453 23800 7.5462
0.3467 23900 7.534
0.3482 24000 7.483
0.3496 24100 7.5753
0.3511 24200 7.4996
0.3525 24300 7.5646
0.3540 24400 7.5336
0.3554 24500 7.4838
0.3569 24600 7.5623
0.3583 24700 7.555
0.3598 24800 7.4792
0.3612 24900 7.5471
0.3627 25000 7.5391
0.3641 25100 7.5053
0.3656 25200 7.4548
0.3670 25300 7.5006
0.3685 25400 7.4919
0.3699 25500 7.5475
0.3714 25600 7.5257
0.3728 25700 7.475
0.3743 25800 7.5076
0.3757 25900 7.4515
0.3772 26000 7.5356
0.3786 26100 7.4857
0.3801 26200 7.5171
0.3815 26300 7.5791
0.3830 26400 7.5644
0.3844 26500 7.4906
0.3859 26600 7.5482
0.3873 26700 7.5187
0.3888 26800 7.4507
0.3903 26900 7.475
0.3917 27000 7.4759
0.3932 27100 7.4879
0.3946 27200 7.4923
0.3961 27300 7.5892
0.3975 27400 7.5171
0.3990 27500 7.5175
0.4004 27600 7.4511
0.4019 27700 7.4672
0.4033 27800 7.4772
0.4048 27900 7.5404
0.4062 28000 7.506
0.4077 28100 7.4967
0.4091 28200 7.5027
0.4106 28300 7.4403
0.4120 28400 7.4765
0.4135 28500 7.5107
0.4149 28600 7.4539
0.4164 28700 7.4968
0.4178 28800 7.5257
0.4193 28900 7.4397
0.4207 29000 7.4719
0.4222 29100 7.4504
0.4236 29200 7.6349
0.4251 29300 7.5408
0.4265 29400 7.4787
0.4280 29500 7.4982
0.4294 29600 7.5019
0.4309 29700 7.4224
0.4323 29800 7.5344
0.4338 29900 7.4064
0.4352 30000 7.4633
0.4367 30100 7.4502
0.4381 30200 7.3969
0.4396 30300 7.5308
0.4410 30400 7.4871
0.4425 30500 7.455
0.4439 30600 7.4539
0.4454 30700 7.4482
0.4468 30800 7.4583
0.4483 30900 7.4252
0.4497 31000 7.4617
0.4512 31100 7.516
0.4526 31200 7.5429
0.4541 31300 7.5021
0.4555 31400 7.4942
0.4570 31500 7.4561
0.4584 31600 7.4416
0.4599 31700 7.4393
0.4613 31800 7.4629
0.4628 31900 7.3896
0.4642 32000 7.3846
0.4657 32100 7.495
0.4671 32200 7.4906
0.4686 32300 7.4294
0.4700 32400 7.4553
0.4715 32500 7.4361
0.4729 32600 7.4681
0.4744 32700 7.4271
0.4758 32800 7.4306
0.4773 32900 7.4146
0.4787 33000 7.4556
0.4802 33100 7.4206
0.4816 33200 7.4698
0.4831 33300 7.4399
0.4845 33400 7.4652
0.4860 33500 7.4309
0.4875 33600 7.4228
0.4889 33700 7.4434
0.4904 33800 7.4183
0.4918 33900 7.4261
0.4933 34000 7.6017
0.4947 34100 7.4587
0.4962 34200 7.4396
0.4976 34300 7.4275
0.4991 34400 7.3923
0.5005 34500 7.4911
0.5020 34600 7.4429
0.5034 34700 7.5064
0.5049 34800 7.3998
0.5063 34900 7.4212
0.5078 35000 7.444
0.5092 35100 7.393
0.5107 35200 7.3896
0.5121 35300 7.4193
0.5136 35400 7.4707
0.5150 35500 7.4099
0.5165 35600 7.4312
0.5179 35700 7.4759
0.5194 35800 7.402
0.5208 35900 7.3632
0.5223 36000 7.5035
0.5237 36100 7.4089
0.5252 36200 7.4392
0.5266 36300 7.3915
0.5281 36400 7.4029
0.5295 36500 7.4066
0.5310 36600 7.4196
0.5324 36700 7.4213
0.5339 36800 7.5063
0.5353 36900 7.4064
0.5368 37000 7.4153
0.5382 37100 7.4297
0.5397 37200 7.4057
0.5411 37300 7.423
0.5426 37400 7.4402
0.5440 37500 7.3909
0.5455 37600 7.4572
0.5469 37700 7.3766
0.5484 37800 7.3829
0.5498 37900 7.4331
0.5513 38000 7.4048
0.5527 38100 7.4799
0.5542 38200 7.3978
0.5556 38300 7.3738
0.5571 38400 7.4207
0.5585 38500 7.3382
0.5600 38600 7.4345
0.5614 38700 7.4686
0.5629 38800 7.4463
0.5643 38900 7.378
0.5658 39000 7.3953
0.5672 39100 7.4133
0.5687 39200 7.4111
0.5701 39300 7.3912
0.5716 39400 7.4585
0.5730 39500 7.4443
0.5745 39600 7.3856
0.5759 39700 7.4676
0.5774 39800 7.4174
0.5788 39900 7.3785
0.5803 40000 7.5674
0.5817 40100 7.4845
0.5832 40200 7.4498
0.5847 40300 7.4074
0.5861 40400 7.4074
0.5876 40500 7.4946
0.5890 40600 7.4253
0.5905 40700 7.4462
0.5919 40800 7.3849
0.5934 40900 7.4016
0.5948 41000 7.4397
0.5963 41100 7.3705
0.5977 41200 7.4636
0.5992 41300 7.399
0.6006 41400 7.4496
0.6021 41500 7.4116
0.6035 41600 7.3557
0.6050 41700 7.3922
0.6064 41800 7.3758
0.6079 41900 7.5005
0.6093 42000 7.4038
0.6108 42100 7.3832
0.6122 42200 7.3923
0.6137 42300 7.4042
0.6151 42400 7.3656
0.6166 42500 7.3786
0.6180 42600 7.3638
0.6195 42700 7.3901
0.6209 42800 7.4051
0.6224 42900 7.3723
0.6238 43000 7.3444
0.6253 43100 7.4124
0.6267 43200 7.3888
0.6282 43300 7.4841
0.6296 43400 7.3651
0.6311 43500 7.396
0.6325 43600 7.3486
0.6340 43700 7.3666
0.6354 43800 7.3746
0.6369 43900 7.3036
0.6383 44000 7.3837
0.6398 44100 7.3918
0.6412 44200 7.3793
0.6427 44300 7.3511
0.6441 44400 7.4343
0.6456 44500 7.4548
0.6470 44600 7.3629
0.6485 44700 7.3671
0.6499 44800 7.3332
0.6514 44900 7.35
0.6528 45000 7.3927
0.6543 45100 7.329
0.6557 45200 7.3744
0.6572 45300 7.3614
0.6586 45400 7.3728
0.6601 45500 7.3306
0.6615 45600 7.4415
0.6630 45700 7.348
0.6644 45800 7.3279
0.6659 45900 7.4125
0.6673 46000 7.3706
0.6688 46100 7.4031
0.6702 46200 7.4145
0.6717 46300 7.3848
0.6731 46400 7.3573
0.6746 46500 7.3203
0.6760 46600 7.4073
0.6775 46700 7.4367
0.6789 46800 7.4251
0.6804 46900 7.3963
0.6819 47000 7.3949
0.6833 47100 7.3926
0.6848 47200 7.3081
0.6862 47300 7.4249
0.6877 47400 7.3092
0.6891 47500 7.3735
0.6906 47600 7.4299
0.6920 47700 7.2919
0.6935 47800 7.4652
0.6949 47900 7.3165
0.6964 48000 7.444
0.6978 48100 7.3852
0.6993 48200 7.3648
0.7007 48300 7.3783
0.7022 48400 7.3228
0.7036 48500 7.3889
0.7051 48600 7.3413
0.7065 48700 7.4217
0.7080 48800 7.4866
0.7094 48900 7.3115
0.7109 49000 7.35
0.7123 49100 7.4323
0.7138 49200 7.3708
0.7152 49300 7.3954
0.7167 49400 7.4077
0.7181 49500 7.3876
0.7196 49600 7.2929
0.7210 49700 7.2997
0.7225 49800 7.3759
0.7239 49900 7.3393
0.7254 50000 7.2742
0.7268 50100 7.3637
0.7283 50200 7.3379
0.7297 50300 7.3219
0.7312 50400 7.3479
0.7326 50500 7.2966
0.7341 50600 7.3362
0.7355 50700 7.3792
0.7370 50800 7.3013
0.7384 50900 7.2955
0.7399 51000 7.3974
0.7413 51100 7.326
0.7428 51200 7.3634
0.7442 51300 7.3402
0.7457 51400 7.3566
0.7471 51500 7.3603
0.7486 51600 7.3542
0.7500 51700 7.356
0.7515 51800 7.3196
0.7529 51900 7.3399
0.7544 52000 7.3629
0.7558 52100 7.3171
0.7573 52200 7.3064
0.7587 52300 7.3864
0.7602 52400 7.3033
0.7616 52500 7.3587
0.7631 52600 7.3892
0.7645 52700 7.3275
0.7660 52800 7.3624
0.7674 52900 7.3305
0.7689 53000 7.4019
0.7703 53100 7.4401
0.7718 53200 7.2483
0.7732 53300 7.3542
0.7747 53400 7.3551
0.7761 53500 7.3497
0.7776 53600 7.3095
0.7791 53700 7.2684
0.7805 53800 7.2706
0.7820 53900 7.3338
0.7834 54000 7.4137
0.7849 54100 7.3221
0.7863 54200 7.3714
0.7878 54300 7.3267
0.7892 54400 7.372
0.7907 54500 7.3859
0.7921 54600 7.4655
0.7936 54700 7.3012
0.7950 54800 7.3107
0.7965 54900 7.3496
0.7979 55000 7.2957
0.7994 55100 7.2869
0.8008 55200 7.2856
0.8023 55300 7.3168
0.8037 55400 7.2536
0.8052 55500 7.479
0.8066 55600 7.3392
0.8081 55700 7.3392
0.8095 55800 7.3294
0.8110 55900 7.4097
0.8124 56000 7.3114
0.8139 56100 7.4436
0.8153 56200 7.2969
0.8168 56300 7.3473
0.8182 56400 7.2364
0.8197 56500 7.2866
0.8211 56600 7.4131
0.8226 56700 7.3731
0.8240 56800 7.32
0.8255 56900 7.2438
0.8269 57000 7.4079
0.8284 57100 7.3534
0.8298 57200 7.306
0.8313 57300 7.3141
0.8327 57400 7.2556
0.8342 57500 7.3611
0.8356 57600 7.3243
0.8371 57700 7.3922
0.8385 57800 7.2958
0.8400 57900 7.4085
0.8414 58000 7.4068
0.8429 58100 7.5064
0.8443 58200 7.3379
0.8458 58300 7.3297
0.8472 58400 7.3437
0.8487 58500 7.3121
0.8501 58600 7.3205
0.8516 58700 7.3518
0.8530 58800 7.2968
0.8545 58900 7.3057
0.8559 59000 7.3564
0.8574 59100 7.3098
0.8588 59200 7.3262
0.8603 59300 7.3389
0.8617 59400 7.3978
0.8632 59500 7.3629
0.8646 59600 7.3027
0.8661 59700 7.2407
0.8675 59800 7.3382
0.8690 59900 7.3219
0.8704 60000 7.3075
0.8719 60100 7.3662
0.8733 60200 7.3244
0.8748 60300 7.3408
0.8763 60400 7.2908
0.8777 60500 7.3136
0.8792 60600 7.3829
0.8806 60700 7.4448
0.8821 60800 7.3708
0.8835 60900 7.314
0.8850 61000 7.29
0.8864 61100 7.3241
0.8879 61200 7.2737
0.8893 61300 7.314
0.8908 61400 7.2747
0.8922 61500 7.2132
0.8937 61600 7.3681
0.8951 61700 7.3407
0.8966 61800 7.3741
0.8980 61900 7.2677
0.8995 62000 7.487
0.9009 62100 7.308
0.9024 62200 7.3044
0.9038 62300 7.2859
0.9053 62400 7.2811
0.9067 62500 7.3592
0.9082 62600 7.4129
0.9096 62700 7.2644
0.9111 62800 7.2298
0.9125 62900 7.4237
0.9140 63000 7.2801
0.9154 63100 7.3546
0.9169 63200 7.3754
0.9183 63300 7.3529
0.9198 63400 7.2346
0.9212 63500 7.408
0.9227 63600 7.3298
0.9241 63700 7.4733
0.9256 63800 7.3459
0.9270 63900 7.2923
0.9285 64000 7.2328
0.9299 64100 7.2707
0.9314 64200 7.3393
0.9328 64300 7.3503
0.9343 64400 7.3173
0.9357 64500 7.2707
0.9372 64600 7.3478
0.9386 64700 7.2817
0.9401 64800 7.3272
0.9415 64900 7.2375
0.9430 65000 7.3093
0.9444 65100 7.3212
0.9459 65200 7.3191
0.9473 65300 7.2883
0.9488 65400 7.2518
0.9502 65500 7.2883
0.9517 65600 7.3728
0.9531 65700 7.3553
0.9546 65800 7.3012
0.9560 65900 7.301
0.9575 66000 7.2617
0.9589 66100 7.2118
0.9604 66200 7.4651
0.9618 66300 7.3624
0.9633 66400 7.2278
0.9647 66500 7.2696
0.9662 66600 7.3305
0.9676 66700 7.3671
0.9691 66800 7.3348
0.9705 66900 7.3
0.9720 67000 7.2865
0.9735 67100 7.3312
0.9749 67200 7.371
0.9764 67300 7.2484
0.9778 67400 7.2837
0.9793 67500 7.2391
0.9807 67600 7.2212
0.9822 67700 7.3374
0.9836 67800 7.2504
0.9851 67900 7.3122
0.9865 68000 7.2844
0.9880 68100 7.2359
0.9894 68200 7.3128
0.9909 68300 7.2761
0.9923 68400 7.3323
0.9938 68500 7.1825
0.9952 68600 7.278
0.9967 68700 7.2837
0.9981 68800 7.3169
0.9996 68900 7.2623
1.0010 69000 7.259
1.0025 69100 7.3306
1.0039 69200 7.3467
1.0054 69300 7.2634
1.0068 69400 7.2354
1.0083 69500 7.2741
1.0097 69600 7.2045
1.0112 69700 7.4086
1.0126 69800 7.2732
1.0141 69900 7.3732
1.0155 70000 7.2656
1.0170 70100 7.2976
1.0184 70200 7.2879
1.0199 70300 7.2157
1.0213 70400 7.2379
1.0228 70500 7.2708
1.0242 70600 7.3205
1.0257 70700 7.3042
1.0271 70800 7.393
1.0286 70900 7.256
1.0300 71000 7.2721
1.0315 71100 7.3624
1.0329 71200 7.2705
1.0344 71300 7.3707
1.0358 71400 7.2196
1.0373 71500 7.2274
1.0387 71600 7.2341
1.0402 71700 7.2845
1.0416 71800 7.2602
1.0431 71900 7.3173
1.0445 72000 7.248
1.0460 72100 7.2655
1.0474 72200 7.283
1.0489 72300 7.2709
1.0503 72400 7.2334
1.0518 72500 7.342
1.0532 72600 7.3004
1.0547 72700 7.3026
1.0561 72800 7.4001
1.0576 72900 7.2554
1.0590 73000 7.3312
1.0605 73100 7.2644
1.0619 73200 7.3204
1.0634 73300 7.2237
1.0648 73400 7.246
1.0663 73500 7.3053
1.0677 73600 7.2601
1.0692 73700 7.2822
1.0707 73800 7.2581
1.0721 73900 7.2571
1.0736 74000 7.2097
1.0750 74100 7.2547
1.0765 74200 7.2163
1.0779 74300 7.3213
1.0794 74400 7.3406
1.0808 74500 7.3094
1.0823 74600 7.2213
1.0837 74700 7.3479
1.0852 74800 7.2986
1.0866 74900 7.3306
1.0881 75000 7.307
1.0895 75100 7.2829
1.0910 75200 7.2862
1.0924 75300 7.2987
1.0939 75400 7.2404
1.0953 75500 7.2328
1.0968 75600 7.2212
1.0982 75700 7.3198
1.0997 75800 7.3183
1.1011 75900 7.2962
1.1026 76000 7.3928
1.1040 76100 7.2599
1.1055 76200 7.2
1.1069 76300 7.2838
1.1084 76400 7.2746
1.1098 76500 7.256
1.1113 76600 7.4477
1.1127 76700 7.3582
1.1142 76800 7.2496
1.1156 76900 7.3052
1.1171 77000 7.1684
1.1185 77100 7.2895
1.1200 77200 7.2797
1.1214 77300 7.2516
1.1229 77400 7.3198
1.1243 77500 7.3005
1.1258 77600 7.2693
1.1272 77700 7.2538
1.1287 77800 7.3476
1.1301 77900 7.226
1.1316 78000 7.2683
1.1330 78100 7.2951
1.1345 78200 7.2157
1.1359 78300 7.1832
1.1374 78400 7.3219
1.1388 78500 7.3291
1.1403 78600 7.1644
1.1417 78700 7.2582
1.1432 78800 7.3146
1.1446 78900 7.2614
1.1461 79000 7.2505
1.1475 79100 7.2875
1.1490 79200 7.3753
1.1504 79300 7.2738
1.1519 79400 7.2347
1.1533 79500 7.1976
1.1548 79600 7.2113
1.1562 79700 7.2996
1.1577 79800 7.2237
1.1591 79900 7.2462
1.1606 80000 7.3157
1.1620 80100 7.307
1.1635 80200 7.2132
1.1649 80300 7.187
1.1664 80400 7.2596
1.1679 80500 7.2475
1.1693 80600 7.2687
1.1708 80700 7.1512
1.1722 80800 7.3138
1.1737 80900 7.2847
1.1751 81000 7.2623
1.1766 81100 7.1986
1.1780 81200 7.4106
1.1795 81300 7.3304
1.1809 81400 7.2514
1.1824 81500 7.2369
1.1838 81600 7.2618
1.1853 81700 7.2659
1.1867 81800 7.3809
1.1882 81900 7.2301
1.1896 82000 7.315
1.1911 82100 7.2374
1.1925 82200 7.189
1.1940 82300 7.4537
1.1954 82400 7.3656
1.1969 82500 7.2017
1.1983 82600 7.2854
1.1998 82700 7.2499
1.2012 82800 7.1772
1.2027 82900 7.2718
1.2041 83000 7.3552
1.2056 83100 7.2341
1.2070 83200 7.3153
1.2085 83300 7.265
1.2099 83400 7.2748
1.2114 83500 7.246
1.2128 83600 7.2111
1.2143 83700 7.1699
1.2157 83800 7.2475
1.2172 83900 7.2873
1.2186 84000 7.173
1.2201 84100 7.195
1.2215 84200 7.3038
1.2230 84300 7.2836
1.2244 84400 7.1667
1.2259 84500 7.2658
1.2273 84600 7.2664
1.2288 84700 7.2843
1.2302 84800 7.3177
1.2317 84900 7.2835
1.2331 85000 7.2224
1.2346 85100 7.2898
1.2360 85200 7.2095
1.2375 85300 7.2349
1.2389 85400 7.206
1.2404 85500 7.2005
1.2418 85600 7.2309
1.2433 85700 7.3086
1.2447 85800 7.2708
1.2462 85900 7.2402
1.2476 86000 7.4116
1.2491 86100 7.1708
1.2505 86200 7.2307
1.2520 86300 7.2017
1.2534 86400 7.3533
1.2549 86500 7.1598
1.2563 86600 7.3376
1.2578 86700 7.2368
1.2592 86800 7.1713
1.2607 86900 7.2531
1.2622 87000 7.222
1.2636 87100 7.1982
1.2651 87200 7.2025
1.2665 87300 7.4178
1.2680 87400 7.2592
1.2694 87500 7.2311
1.2709 87600 7.1747
1.2723 87700 7.2667
1.2738 87800 7.258
1.2752 87900 7.264
1.2767 88000 7.2469
1.2781 88100 7.1759
1.2796 88200 7.2578
1.2810 88300 7.2246
1.2825 88400 7.4164
1.2839 88500 7.1923
1.2854 88600 7.2276
1.2868 88700 7.2126
1.2883 88800 7.2507
1.2897 88900 7.2142
1.2912 89000 7.2991
1.2926 89100 7.166
1.2941 89200 7.2347
1.2955 89300 7.2496
1.2970 89400 7.2074
1.2984 89500 7.1882
1.2999 89600 7.2151
1.3013 89700 7.1935
1.3028 89800 7.2217
1.3042 89900 7.2504
1.3057 90000 7.2479
1.3071 90100 7.2688
1.3086 90200 7.2443
1.3100 90300 7.2404
1.3115 90400 7.2306
1.3129 90500 7.313
1.3144 90600 7.2468
1.3158 90700 7.1899
1.3173 90800 7.2764
1.3187 90900 7.3764
1.3202 91000 7.2008
1.3216 91100 7.223
1.3231 91200 7.1656
1.3245 91300 7.2959
1.3260 91400 7.2345
1.3274 91500 7.3
1.3289 91600 7.2364
1.3303 91700 7.2499
1.3318 91800 7.3536
1.3332 91900 7.1878
1.3347 92000 7.2002
1.3361 92100 7.2736
1.3376 92200 7.2102
1.3390 92300 7.2082
1.3405 92400 7.255
1.3419 92500 7.2984
1.3434 92600 7.2955
1.3448 92700 7.2105
1.3463 92800 7.1842
1.3477 92900 7.1726
1.3492 93000 7.1891
1.3506 93100 7.2408
1.3521 93200 7.2349
1.3535 93300 7.2777
1.3550 93400 7.2967
1.3564 93500 7.1823
1.3579 93600 7.2017
1.3594 93700 7.2102
1.3608 93800 7.2688
1.3623 93900 7.3601
1.3637 94000 7.2129
1.3652 94100 7.2128
1.3666 94200 7.2365
1.3681 94300 7.2332
1.3695 94400 7.2264
1.3710 94500 7.3086
1.3724 94600 7.2924
1.3739 94700 7.1663
1.3753 94800 7.2429
1.3768 94900 7.3012
1.3782 95000 7.2854
1.3797 95100 7.2242
1.3811 95200 7.3575
1.3826 95300 7.2296
1.3840 95400 7.2191
1.3855 95500 7.2395
1.3869 95600 7.2786
1.3884 95700 7.4124
1.3898 95800 7.3207
1.3913 95900 7.2167
1.3927 96000 7.2799
1.3942 96100 7.2316
1.3956 96200 7.2393
1.3971 96300 7.2299
1.3985 96400 7.1464
1.4000 96500 7.2781
1.4014 96600 7.2986
1.4029 96700 7.1583
1.4043 96800 7.2043
1.4058 96900 7.2922
1.4072 97000 7.2951
1.4087 97100 7.2647
1.4101 97200 7.3304
1.4116 97300 7.1791
1.4130 97400 7.2872
1.4145 97500 7.1827
1.4159 97600 7.1795
1.4174 97700 7.1818
1.4188 97800 7.253
1.4203 97900 7.3293
1.4217 98000 7.2292
1.4232 98100 7.2255
1.4246 98200 7.3715
1.4261 98300 7.1778
1.4275 98400 7.2625
1.4290 98500 7.2401
1.4304 98600 7.2375
1.4319 98700 7.309
1.4333 98800 7.1035
1.4348 98900 7.2621
1.4362 99000 7.1957
1.4377 99100 7.24
1.4391 99200 7.2674
1.4406 99300 7.2338
1.4420 99400 7.2034
1.4435 99500 7.2177
1.4449 99600 7.2464
1.4464 99700 7.3464
1.4478 99800 7.2776
1.4493 99900 7.2709
1.4507 100000 7.2661
1.4522 100100 7.1875
1.4536 100200 7.2424
1.4551 100300 7.1838
1.4566 100400 7.2626
1.4580 100500 7.2717
1.4595 100600 7.1745
1.4609 100700 7.1964
1.4624 100800 7.223
1.4638 100900 7.2205
1.4653 101000 7.3256
1.4667 101100 7.2498
1.4682 101200 7.2029
1.4696 101300 7.4786
1.4711 101400 7.1836
1.4725 101500 7.2453
1.4740 101600 7.1911
1.4754 101700 7.1539
1.4769 101800 7.2576
1.4783 101900 7.3469
1.4798 102000 7.1994
1.4812 102100 7.2129
1.4827 102200 7.1083
1.4841 102300 7.1974
1.4856 102400 7.2625
1.4870 102500 7.2098
1.4885 102600 7.2135
1.4899 102700 7.1852
1.4914 102800 7.1693
1.4928 102900 7.1697
1.4943 103000 7.1868
1.4957 103100 7.21
1.4972 103200 7.2178
1.4986 103300 7.2174
1.5001 103400 7.2828
1.5015 103500 7.2731
1.5030 103600 7.1215
1.5044 103700 7.2617
1.5059 103800 7.1843
1.5073 103900 7.2279
1.5088 104000 7.2751
1.5102 104100 7.3623
1.5117 104200 7.1917
1.5131 104300 7.2277
1.5146 104400 7.2894
1.5160 104500 7.3754
1.5175 104600 7.1816
1.5189 104700 7.2402
1.5204 104800 7.261
1.5218 104900 7.1941
1.5233 105000 7.3078
1.5247 105100 7.3108
1.5262 105200 7.1566
1.5276 105300 7.2064
1.5291 105400 7.2603
1.5305 105500 7.2434
1.5320 105600 7.1932
1.5334 105700 7.1801
1.5349 105800 7.2148
1.5363 105900 7.3564
1.5378 106000 7.1438
1.5392 106100 7.1641
1.5407 106200 7.2043
1.5421 106300 7.1688
1.5436 106400 7.135
1.5450 106500 7.2125
1.5465 106600 7.1826
1.5479 106700 7.2009
1.5494 106800 7.1943
1.5508 106900 7.1598
1.5523 107000 7.1596
1.5538 107100 7.2316
1.5552 107200 7.1596
1.5567 107300 7.2746
1.5581 107400 7.3602
1.5596 107500 7.2657
1.5610 107600 7.1554
1.5625 107700 7.2113
1.5639 107800 7.137
1.5654 107900 7.2269
1.5668 108000 7.3221
1.5683 108100 7.1854
1.5697 108200 7.25
1.5712 108300 7.3238
1.5726 108400 7.1586
1.5741 108500 7.2338
1.5755 108600 7.1514
1.5770 108700 7.2144
1.5784 108800 7.3535
1.5799 108900 7.1395
1.5813 109000 7.2299
1.5828 109100 7.205
1.5842 109200 7.1154
1.5857 109300 7.3584
1.5871 109400 7.2308
1.5886 109500 7.1952
1.5900 109600 7.1963
1.5915 109700 7.2026
1.5929 109800 7.1545
1.5944 109900 7.153
1.5958 110000 7.156
1.5973 110100 7.2812
1.5987 110200 7.2105
1.6002 110300 7.268
1.6016 110400 7.2062
1.6031 110500 7.2422
1.6045 110600 7.1598
1.6060 110700 7.1343
1.6074 110800 7.381
1.6089 110900 7.2098
1.6103 111000 7.2246
1.6118 111100 7.1944
1.6132 111200 7.1991
1.6147 111300 7.2289
1.6161 111400 7.2578
1.6176 111500 7.2953
1.6190 111600 7.3101
1.6205 111700 7.1879
1.6219 111800 7.2002
1.6234 111900 7.1671
1.6248 112000 7.3259
1.6263 112100 7.2716
1.6277 112200 7.309
1.6292 112300 7.1647
1.6306 112400 7.1964
1.6321 112500 7.2476
1.6335 112600 7.1541
1.6350 112700 7.3043
1.6364 112800 7.2093
1.6379 112900 7.1503
1.6393 113000 7.3591
1.6408 113100 7.1934
1.6422 113200 7.2943
1.6437 113300 7.272
1.6451 113400 7.2545
1.6466 113500 7.1619
1.6480 113600 7.151
1.6495 113700 7.2713
1.6510 113800 7.1488
1.6524 113900 7.3434
1.6539 114000 7.2193
1.6553 114100 7.1353
1.6568 114200 7.3057
1.6582 114300 7.2861
1.6597 114400 7.2459
1.6611 114500 7.2736
1.6626 114600 7.2227
1.6640 114700 7.2684
1.6655 114800 7.1461
1.6669 114900 7.2167
1.6684 115000 7.2059
1.6698 115100 7.1736
1.6713 115200 7.1542
1.6727 115300 7.1769
1.6742 115400 7.2679
1.6756 115500 7.2218
1.6771 115600 7.1985
1.6785 115700 7.129
1.6800 115800 7.4028
1.6814 115900 7.2482
1.6829 116000 7.1872
1.6843 116100 7.2251
1.6858 116200 7.2076
1.6872 116300 7.186
1.6887 116400 7.2355
1.6901 116500 7.1839
1.6916 116600 7.1738
1.6930 116700 7.1798
1.6945 116800 7.1351
1.6959 116900 7.2726
1.6974 117000 7.1277
1.6988 117100 7.2429
1.7003 117200 7.1544
1.7017 117300 7.2503
1.7032 117400 7.3181
1.7046 117500 7.1616
1.7061 117600 7.1289
1.7075 117700 7.1757
1.7090 117800 7.2318
1.7104 117900 7.3686
1.7119 118000 7.2097
1.7133 118100 7.1598
1.7148 118200 7.0969
1.7162 118300 7.1132
1.7177 118400 7.2823
1.7191 118500 7.1536
1.7206 118600 7.2077
1.7220 118700 7.1452
1.7235 118800 7.2714
1.7249 118900 7.1392
1.7264 119000 7.1296
1.7278 119100 7.1569
1.7293 119200 7.121
1.7307 119300 7.24
1.7322 119400 7.1903
1.7336 119500 7.147
1.7351 119600 7.2807
1.7365 119700 7.3659
1.7380 119800 7.2397
1.7394 119900 7.1596
1.7409 120000 7.1245
1.7423 120100 7.1362
1.7438 120200 7.2544
1.7452 120300 7.1631
1.7467 120400 7.2098
1.7482 120500 7.1435
1.7496 120600 7.3286
1.7511 120700 7.2086
1.7525 120800 7.2418
1.7540 120900 7.1677
1.7554 121000 7.1639
1.7569 121100 7.2157
1.7583 121200 7.2562
1.7598 121300 7.2396
1.7612 121400 7.2514
1.7627 121500 7.2454
1.7641 121600 7.1899
1.7656 121700 7.1415
1.7670 121800 7.2243
1.7685 121900 7.1661
1.7699 122000 7.1955
1.7714 122100 7.2374
1.7728 122200 7.1602
1.7743 122300 7.3033
1.7757 122400 7.2356
1.7772 122500 7.1476
1.7786 122600 7.1767
1.7801 122700 7.1763
1.7815 122800 7.3496
1.7830 122900 7.0778
1.7844 123000 7.2753
1.7859 123100 7.2039
1.7873 123200 7.1035
1.7888 123300 7.1969
1.7902 123400 7.1817
1.7917 123500 7.2926
1.7931 123600 7.1553
1.7946 123700 7.2357
1.7960 123800 7.3222
1.7975 123900 7.216
1.7989 124000 7.1655
1.8004 124100 7.1662
1.8018 124200 7.2033
1.8033 124300 7.1864
1.8047 124400 7.2686
1.8062 124500 7.2556
1.8076 124600 7.1678
1.8091 124700 7.1769
1.8105 124800 7.2453
1.8120 124900 7.2099
1.8134 125000 7.2256
1.8149 125100 7.2116
1.8163 125200 7.3909
1.8178 125300 7.11
1.8192 125400 7.2632
1.8207 125500 7.2604
1.8221 125600 7.3064
1.8236 125700 7.2577
1.8250 125800 7.2957
1.8265 125900 7.1698
1.8279 126000 7.0963
1.8294 126100 7.1681
1.8308 126200 7.2173
1.8323 126300 7.269
1.8337 126400 7.1635
1.8352 126500 7.2284
1.8366 126600 7.1664
1.8381 126700 7.2332
1.8395 126800 7.2108
1.8410 126900 7.2006
1.8424 127000 7.1449
1.8439 127100 7.197
1.8454 127200 7.2331
1.8468 127300 7.1949
1.8483 127400 7.3798
1.8497 127500 7.266
1.8512 127600 7.1908
1.8526 127700 7.1272
1.8541 127800 7.2454
1.8555 127900 7.2053
1.8570 128000 7.1379
1.8584 128100 7.4103
1.8599 128200 7.1312
1.8613 128300 7.1742
1.8628 128400 7.1966
1.8642 128500 7.1605
1.8657 128600 7.2
1.8671 128700 7.2278
1.8686 128800 7.1493
1.8700 128900 7.224
1.8715 129000 7.28
1.8729 129100 7.2298
1.8744 129200 7.1972
1.8758 129300 7.2552
1.8773 129400 7.0971
1.8787 129500 7.1208
1.8802 129600 7.2428
1.8816 129700 7.1744
1.8831 129800 7.1957
1.8845 129900 7.2358
1.8860 130000 7.2524
1.8874 130100 7.3145
1.8889 130200 7.17
1.8903 130300 7.1912
1.8918 130400 7.1248
1.8932 130500 7.1168
1.8947 130600 7.18
1.8961 130700 7.2399
1.8976 130800 7.1988
1.8990 130900 7.1501
1.9005 131000 7.342
1.9019 131100 7.2703
1.9034 131200 7.2915
1.9048 131300 7.2106
1.9063 131400 7.1687
1.9077 131500 7.2873
1.9092 131600 7.2178
1.9106 131700 7.1273
1.9121 131800 7.363
1.9135 131900 7.1924
1.9150 132000 7.3224
1.9164 132100 7.1551
1.9179 132200 7.2864
1.9193 132300 7.1798
1.9208 132400 7.2443
1.9222 132500 7.3269
1.9237 132600 7.3145
1.9251 132700 7.212
1.9266 132800 7.1377
1.9280 132900 7.1437
1.9295 133000 7.2541
1.9309 133100 7.1828
1.9324 133200 7.179
1.9338 133300 7.1152
1.9353 133400 7.19
1.9367 133500 7.3336
1.9382 133600 7.166
1.9396 133700 7.1101
1.9411 133800 7.3584
1.9426 133900 7.2676
1.9440 134000 7.2241
1.9455 134100 7.2064
1.9469 134200 7.2955
1.9484 134300 7.1775
1.9498 134400 7.3157
1.9513 134500 7.1877
1.9527 134600 7.2107
1.9542 134700 7.1077
1.9556 134800 7.1995
1.9571 134900 7.3072
1.9585 135000 7.1454
1.9600 135100 7.195
1.9614 135200 7.1234
1.9629 135300 7.1613
1.9643 135400 7.2272
1.9658 135500 7.283
1.9672 135600 7.2511
1.9687 135700 7.2221
1.9701 135800 7.2522
1.9716 135900 7.1319
1.9730 136000 7.3165
1.9745 136100 7.3674
1.9759 136200 7.0887
1.9774 136300 7.1835
1.9788 136400 7.1564
1.9803 136500 7.1821
1.9817 136600 7.1491
1.9832 136700 7.2409
1.9846 136800 7.1122
1.9861 136900 7.2579
1.9875 137000 7.2762
1.9890 137100 7.3117
1.9904 137200 7.1045
1.9919 137300 7.2866
1.9933 137400 7.3154
1.9948 137500 7.2134
1.9962 137600 7.1569
1.9977 137700 7.2418
1.9991 137800 7.2169

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
7
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for youssefkhalil320/all-MiniLM-L6-v14-pair_score

Finetuned
(451)
this model
Finetunes
2 models