all-MiniLM-L6-v16-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'ramdan tagine',
'glass',
'samsung',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0016 | 100 | 13.8388 |
0.0033 | 200 | 13.6758 |
0.0049 | 300 | 13.2027 |
0.0065 | 400 | 12.9865 |
0.0082 | 500 | 12.4647 |
0.0098 | 600 | 11.9259 |
0.0114 | 700 | 11.514 |
0.0131 | 800 | 10.7788 |
0.0147 | 900 | 10.2176 |
0.0164 | 1000 | 9.8098 |
0.0180 | 1100 | 9.4029 |
0.0196 | 1200 | 9.0311 |
0.0213 | 1300 | 8.8268 |
0.0229 | 1400 | 8.6939 |
0.0245 | 1500 | 8.5978 |
0.0262 | 1600 | 8.5436 |
0.0278 | 1700 | 8.4912 |
0.0294 | 1800 | 8.4454 |
0.0311 | 1900 | 8.4029 |
0.0327 | 2000 | 8.3616 |
0.0343 | 2100 | 8.3393 |
0.0360 | 2200 | 8.3268 |
0.0376 | 2300 | 8.2938 |
0.0392 | 2400 | 8.2529 |
0.0409 | 2500 | 8.2363 |
0.0425 | 2600 | 8.2313 |
0.0442 | 2700 | 8.2013 |
0.0458 | 2800 | 8.1815 |
0.0474 | 2900 | 8.1639 |
0.0491 | 3000 | 8.1823 |
0.0507 | 3100 | 8.1366 |
0.0523 | 3200 | 8.1295 |
0.0540 | 3300 | 8.1365 |
0.0556 | 3400 | 8.1125 |
0.0572 | 3500 | 8.1136 |
0.0589 | 3600 | 8.1254 |
0.0605 | 3700 | 8.0799 |
0.0621 | 3800 | 8.0873 |
0.0638 | 3900 | 8.0774 |
0.0654 | 4000 | 8.0598 |
0.0670 | 4100 | 8.0577 |
0.0687 | 4200 | 8.0371 |
0.0703 | 4300 | 8.0379 |
0.0720 | 4400 | 8.0426 |
0.0736 | 4500 | 8.0091 |
0.0752 | 4600 | 7.9718 |
0.0769 | 4700 | 7.9905 |
0.0785 | 4800 | 8.009 |
0.0801 | 4900 | 7.9921 |
0.0818 | 5000 | 7.995 |
0.0834 | 5100 | 7.977 |
0.0850 | 5200 | 7.9612 |
0.0867 | 5300 | 7.9783 |
0.0883 | 5400 | 7.9462 |
0.0899 | 5500 | 7.9508 |
0.0916 | 5600 | 7.9445 |
0.0932 | 5700 | 7.9308 |
0.0949 | 5800 | 7.9476 |
0.0965 | 5900 | 7.9107 |
0.0981 | 6000 | 7.8842 |
0.0998 | 6100 | 7.9056 |
0.1014 | 6200 | 7.91 |
0.1030 | 6300 | 7.8844 |
0.1047 | 6400 | 7.8953 |
0.1063 | 6500 | 7.8874 |
0.1079 | 6600 | 7.9254 |
0.1096 | 6700 | 7.9131 |
0.1112 | 6800 | 7.8585 |
0.1128 | 6900 | 7.9062 |
0.1145 | 7000 | 7.8495 |
0.1161 | 7100 | 7.8944 |
0.1177 | 7200 | 7.8892 |
0.1194 | 7300 | 7.838 |
0.1210 | 7400 | 7.8807 |
0.1227 | 7500 | 7.8692 |
0.1243 | 7600 | 7.8472 |
0.1259 | 7700 | 7.8463 |
0.1276 | 7800 | 7.864 |
0.1292 | 7900 | 7.8081 |
0.1308 | 8000 | 7.8333 |
0.1325 | 8100 | 7.8473 |
0.1341 | 8200 | 7.8218 |
0.1357 | 8300 | 7.8336 |
0.1374 | 8400 | 7.8246 |
0.1390 | 8500 | 7.8244 |
0.1406 | 8600 | 7.832 |
0.1423 | 8700 | 7.7924 |
0.1439 | 8800 | 7.7813 |
0.1455 | 8900 | 7.8092 |
0.1472 | 9000 | 7.8171 |
0.1488 | 9100 | 7.7756 |
0.1505 | 9200 | 7.7841 |
0.1521 | 9300 | 7.7821 |
0.1537 | 9400 | 7.8078 |
0.1554 | 9500 | 7.7754 |
0.1570 | 9600 | 7.7715 |
0.1586 | 9700 | 7.739 |
0.1603 | 9800 | 7.772 |
0.1619 | 9900 | 7.7508 |
0.1635 | 10000 | 7.8111 |
0.1652 | 10100 | 7.7507 |
0.1668 | 10200 | 7.7508 |
0.1684 | 10300 | 7.7617 |
0.1701 | 10400 | 7.7572 |
0.1717 | 10500 | 7.7416 |
0.1733 | 10600 | 7.7713 |
0.1750 | 10700 | 7.741 |
0.1766 | 10800 | 7.7305 |
0.1783 | 10900 | 7.7337 |
0.1799 | 11000 | 7.7444 |
0.1815 | 11100 | 7.73 |
0.1832 | 11200 | 7.7371 |
0.1848 | 11300 | 7.7606 |
0.1864 | 11400 | 7.7075 |
0.1881 | 11500 | 7.6909 |
0.1897 | 11600 | 7.7074 |
0.1913 | 11700 | 7.7021 |
0.1930 | 11800 | 7.7066 |
0.1946 | 11900 | 7.7203 |
0.1962 | 12000 | 7.7375 |
0.1979 | 12100 | 7.6847 |
0.1995 | 12200 | 7.7313 |
0.2011 | 12300 | 7.7125 |
0.2028 | 12400 | 7.652 |
0.2044 | 12500 | 7.6687 |
0.2061 | 12600 | 7.6816 |
0.2077 | 12700 | 7.6722 |
0.2093 | 12800 | 7.6984 |
0.2110 | 12900 | 7.6941 |
0.2126 | 13000 | 7.6875 |
0.2142 | 13100 | 7.6958 |
0.2159 | 13200 | 7.7064 |
0.2175 | 13300 | 7.6761 |
0.2191 | 13400 | 7.68 |
0.2208 | 13500 | 7.6614 |
0.2224 | 13600 | 7.673 |
0.2240 | 13700 | 7.6679 |
0.2257 | 13800 | 7.641 |
0.2273 | 13900 | 7.6509 |
0.2289 | 14000 | 7.6539 |
0.2306 | 14100 | 7.6788 |
0.2322 | 14200 | 7.6631 |
0.2339 | 14300 | 7.6815 |
0.2355 | 14400 | 7.6796 |
0.2371 | 14500 | 7.6432 |
0.2388 | 14600 | 7.6244 |
0.2404 | 14700 | 7.7122 |
0.2420 | 14800 | 7.6317 |
0.2437 | 14900 | 7.66 |
0.2453 | 15000 | 7.6164 |
0.2469 | 15100 | 7.6566 |
0.2486 | 15200 | 7.6487 |
0.2502 | 15300 | 7.6119 |
0.2518 | 15400 | 7.606 |
0.2535 | 15500 | 7.6114 |
0.2551 | 15600 | 7.6255 |
0.2567 | 15700 | 7.6003 |
0.2584 | 15800 | 7.5847 |
0.2600 | 15900 | 7.6303 |
0.2617 | 16000 | 7.661 |
0.2633 | 16100 | 7.6191 |
0.2649 | 16200 | 7.6152 |
0.2666 | 16300 | 7.6118 |
0.2682 | 16400 | 7.6169 |
0.2698 | 16500 | 7.6043 |
0.2715 | 16600 | 7.6195 |
0.2731 | 16700 | 7.5836 |
0.2747 | 16800 | 7.6048 |
0.2764 | 16900 | 7.6036 |
0.2780 | 17000 | 7.608 |
0.2796 | 17100 | 7.5983 |
0.2813 | 17200 | 7.644 |
0.2829 | 17300 | 7.6115 |
0.2846 | 17400 | 7.6256 |
0.2862 | 17500 | 7.5924 |
0.2878 | 17600 | 7.6019 |
0.2895 | 17700 | 7.6021 |
0.2911 | 17800 | 7.6095 |
0.2927 | 17900 | 7.6554 |
0.2944 | 18000 | 7.6036 |
0.2960 | 18100 | 7.577 |
0.2976 | 18200 | 7.5874 |
0.2993 | 18300 | 7.5839 |
0.3009 | 18400 | 7.5742 |
0.3025 | 18500 | 7.6244 |
0.3042 | 18600 | 7.5502 |
0.3058 | 18700 | 7.5805 |
0.3074 | 18800 | 7.5563 |
0.3091 | 18900 | 7.595 |
0.3107 | 19000 | 7.5715 |
0.3124 | 19100 | 7.6142 |
0.3140 | 19200 | 7.541 |
0.3156 | 19300 | 7.5641 |
0.3173 | 19400 | 7.6212 |
0.3189 | 19500 | 7.61 |
0.3205 | 19600 | 7.5853 |
0.3222 | 19700 | 7.5599 |
0.3238 | 19800 | 7.5795 |
0.3254 | 19900 | 7.6039 |
0.3271 | 20000 | 7.541 |
0.3287 | 20100 | 7.5619 |
0.3303 | 20200 | 7.5246 |
0.3320 | 20300 | 7.6084 |
0.3336 | 20400 | 7.5701 |
0.3352 | 20500 | 7.5451 |
0.3369 | 20600 | 7.537 |
0.3385 | 20700 | 7.5828 |
0.3402 | 20800 | 7.549 |
0.3418 | 20900 | 7.5503 |
0.3434 | 21000 | 7.5291 |
0.3451 | 21100 | 7.5628 |
0.3467 | 21200 | 7.597 |
0.3483 | 21300 | 7.5617 |
0.3500 | 21400 | 7.5053 |
0.3516 | 21500 | 7.5785 |
0.3532 | 21600 | 7.5539 |
0.3549 | 21700 | 7.5828 |
0.3565 | 21800 | 7.5594 |
0.3581 | 21900 | 7.5109 |
0.3598 | 22000 | 7.5413 |
0.3614 | 22100 | 7.503 |
0.3630 | 22200 | 7.5658 |
0.3647 | 22300 | 7.5586 |
0.3663 | 22400 | 7.6085 |
0.3680 | 22500 | 7.5849 |
0.3696 | 22600 | 7.5378 |
0.3712 | 22700 | 7.5343 |
0.3729 | 22800 | 7.5606 |
0.3745 | 22900 | 7.5982 |
0.3761 | 23000 | 7.5509 |
0.3778 | 23100 | 7.532 |
0.3794 | 23200 | 7.5014 |
0.3810 | 23300 | 7.5394 |
0.3827 | 23400 | 7.5351 |
0.3843 | 23500 | 7.5135 |
0.3859 | 23600 | 7.5168 |
0.3876 | 23700 | 7.5525 |
0.3892 | 23800 | 7.4786 |
0.3908 | 23900 | 7.5134 |
0.3925 | 24000 | 7.5052 |
0.3941 | 24100 | 7.5304 |
0.3958 | 24200 | 7.4864 |
0.3974 | 24300 | 7.5435 |
0.3990 | 24400 | 7.5637 |
0.4007 | 24500 | 7.528 |
0.4023 | 24600 | 7.5458 |
0.4039 | 24700 | 7.5656 |
0.4056 | 24800 | 7.4848 |
0.4072 | 24900 | 7.4949 |
0.4088 | 25000 | 7.5474 |
0.4105 | 25100 | 7.4909 |
0.4121 | 25200 | 7.5029 |
0.4137 | 25300 | 7.5202 |
0.4154 | 25400 | 7.5393 |
0.4170 | 25500 | 7.5203 |
0.4186 | 25600 | 7.455 |
0.4203 | 25700 | 7.526 |
0.4219 | 25800 | 7.4839 |
0.4236 | 25900 | 7.4724 |
0.4252 | 26000 | 7.4277 |
0.4268 | 26100 | 7.5372 |
0.4285 | 26200 | 7.4817 |
0.4301 | 26300 | 7.4961 |
0.4317 | 26400 | 7.4749 |
0.4334 | 26500 | 7.6095 |
0.4350 | 26600 | 7.4773 |
0.4366 | 26700 | 7.4994 |
0.4383 | 26800 | 7.4959 |
0.4399 | 26900 | 7.4702 |
0.4415 | 27000 | 7.4914 |
0.4432 | 27100 | 7.5124 |
0.4448 | 27200 | 7.5087 |
0.4465 | 27300 | 7.4701 |
0.4481 | 27400 | 7.4348 |
0.4497 | 27500 | 7.4994 |
0.4514 | 27600 | 7.4949 |
0.4530 | 27700 | 7.4409 |
0.4546 | 27800 | 7.4319 |
0.4563 | 27900 | 7.4545 |
0.4579 | 28000 | 7.5283 |
0.4595 | 28100 | 7.4309 |
0.4612 | 28200 | 7.4703 |
0.4628 | 28300 | 7.4963 |
0.4644 | 28400 | 7.5041 |
0.4661 | 28500 | 7.4346 |
0.4677 | 28600 | 7.4382 |
0.4693 | 28700 | 7.4151 |
0.4710 | 28800 | 7.5072 |
0.4726 | 28900 | 7.4357 |
0.4743 | 29000 | 7.4584 |
0.4759 | 29100 | 7.4853 |
0.4775 | 29200 | 7.486 |
0.4792 | 29300 | 7.4955 |
0.4808 | 29400 | 7.4086 |
0.4824 | 29500 | 7.4797 |
0.4841 | 29600 | 7.4295 |
0.4857 | 29700 | 7.5126 |
0.4873 | 29800 | 7.4834 |
0.4890 | 29900 | 7.4265 |
0.4906 | 30000 | 7.4643 |
0.4922 | 30100 | 7.4576 |
0.4939 | 30200 | 7.4444 |
0.4955 | 30300 | 7.4734 |
0.4971 | 30400 | 7.4238 |
0.4988 | 30500 | 7.4368 |
0.5004 | 30600 | 7.4485 |
0.5021 | 30700 | 7.3991 |
0.5037 | 30800 | 7.5196 |
0.5053 | 30900 | 7.4278 |
0.5070 | 31000 | 7.3866 |
0.5086 | 31100 | 7.524 |
0.5102 | 31200 | 7.4102 |
0.5119 | 31300 | 7.4421 |
0.5135 | 31400 | 7.4615 |
0.5151 | 31500 | 7.4866 |
0.5168 | 31600 | 7.4128 |
0.5184 | 31700 | 7.3935 |
0.5200 | 31800 | 7.4738 |
0.5217 | 31900 | 7.4116 |
0.5233 | 32000 | 7.4334 |
0.5249 | 32100 | 7.4907 |
0.5266 | 32200 | 7.4142 |
0.5282 | 32300 | 7.4495 |
0.5299 | 32400 | 7.4323 |
0.5315 | 32500 | 7.424 |
0.5331 | 32600 | 7.3877 |
0.5348 | 32700 | 7.449 |
0.5364 | 32800 | 7.468 |
0.5380 | 32900 | 7.4253 |
0.5397 | 33000 | 7.475 |
0.5413 | 33100 | 7.3939 |
0.5429 | 33200 | 7.4668 |
0.5446 | 33300 | 7.5031 |
0.5462 | 33400 | 7.4263 |
0.5478 | 33500 | 7.5039 |
0.5495 | 33600 | 7.392 |
0.5511 | 33700 | 7.4652 |
0.5527 | 33800 | 7.4136 |
0.5544 | 33900 | 7.4503 |
0.5560 | 34000 | 7.3902 |
0.5577 | 34100 | 7.4782 |
0.5593 | 34200 | 7.4757 |
0.5609 | 34300 | 7.3712 |
0.5626 | 34400 | 7.4433 |
0.5642 | 34500 | 7.4549 |
0.5658 | 34600 | 7.4112 |
0.5675 | 34700 | 7.3975 |
0.5691 | 34800 | 7.4119 |
0.5707 | 34900 | 7.3947 |
0.5724 | 35000 | 7.4854 |
0.5740 | 35100 | 7.5613 |
0.5756 | 35200 | 7.4618 |
0.5773 | 35300 | 7.515 |
0.5789 | 35400 | 7.3594 |
0.5805 | 35500 | 7.4234 |
0.5822 | 35600 | 7.4534 |
0.5838 | 35700 | 7.4053 |
0.5855 | 35800 | 7.3663 |
0.5871 | 35900 | 7.3857 |
0.5887 | 36000 | 7.3689 |
0.5904 | 36100 | 7.4165 |
0.5920 | 36200 | 7.3795 |
0.5936 | 36300 | 7.3836 |
0.5953 | 36400 | 7.4077 |
0.5969 | 36500 | 7.3843 |
0.5985 | 36600 | 7.3774 |
0.6002 | 36700 | 7.4366 |
0.6018 | 36800 | 7.4714 |
0.6034 | 36900 | 7.4584 |
0.6051 | 37000 | 7.3623 |
0.6067 | 37100 | 7.4035 |
0.6084 | 37200 | 7.365 |
0.6100 | 37300 | 7.4943 |
0.6116 | 37400 | 7.4059 |
0.6133 | 37500 | 7.3909 |
0.6149 | 37600 | 7.3231 |
0.6165 | 37700 | 7.412 |
0.6182 | 37800 | 7.3996 |
0.6198 | 37900 | 7.3389 |
0.6214 | 38000 | 7.402 |
0.6231 | 38100 | 7.465 |
0.6247 | 38200 | 7.3514 |
0.6263 | 38300 | 7.3865 |
0.6280 | 38400 | 7.4873 |
0.6296 | 38500 | 7.4416 |
0.6312 | 38600 | 7.3992 |
0.6329 | 38700 | 7.3743 |
0.6345 | 38800 | 7.4035 |
0.6362 | 38900 | 7.3766 |
0.6378 | 39000 | 7.3851 |
0.6394 | 39100 | 7.3633 |
0.6411 | 39200 | 7.3937 |
0.6427 | 39300 | 7.4384 |
0.6443 | 39400 | 7.4224 |
0.6460 | 39500 | 7.4045 |
0.6476 | 39600 | 7.3564 |
0.6492 | 39700 | 7.3494 |
0.6509 | 39800 | 7.3939 |
0.6525 | 39900 | 7.3973 |
0.6541 | 40000 | 7.3799 |
0.6558 | 40100 | 7.3509 |
0.6574 | 40200 | 7.3799 |
0.6590 | 40300 | 7.4378 |
0.6607 | 40400 | 7.3407 |
0.6623 | 40500 | 7.3713 |
0.6640 | 40600 | 7.3913 |
0.6656 | 40700 | 7.3822 |
0.6672 | 40800 | 7.3421 |
0.6689 | 40900 | 7.4415 |
0.6705 | 41000 | 7.3794 |
0.6721 | 41100 | 7.3486 |
0.6738 | 41200 | 7.3653 |
0.6754 | 41300 | 7.3587 |
0.6770 | 41400 | 7.4195 |
0.6787 | 41500 | 7.4282 |
0.6803 | 41600 | 7.385 |
0.6819 | 41700 | 7.3735 |
0.6836 | 41800 | 7.4122 |
0.6852 | 41900 | 7.4305 |
0.6868 | 42000 | 7.4394 |
0.6885 | 42100 | 7.4004 |
0.6901 | 42200 | 7.3411 |
0.6918 | 42300 | 7.384 |
0.6934 | 42400 | 7.3436 |
0.6950 | 42500 | 7.4166 |
0.6967 | 42600 | 7.3831 |
0.6983 | 42700 | 7.3274 |
0.6999 | 42800 | 7.3397 |
0.7016 | 42900 | 7.4724 |
0.7032 | 43000 | 7.3562 |
0.7048 | 43100 | 7.3559 |
0.7065 | 43200 | 7.4245 |
0.7081 | 43300 | 7.4727 |
0.7097 | 43400 | 7.3575 |
0.7114 | 43500 | 7.296 |
0.7130 | 43600 | 7.4019 |
0.7146 | 43700 | 7.3603 |
0.7163 | 43800 | 7.3705 |
0.7179 | 43900 | 7.3858 |
0.7196 | 44000 | 7.3836 |
0.7212 | 44100 | 7.3931 |
0.7228 | 44200 | 7.3568 |
0.7245 | 44300 | 7.3929 |
0.7261 | 44400 | 7.3522 |
0.7277 | 44500 | 7.3117 |
0.7294 | 44600 | 7.4005 |
0.7310 | 44700 | 7.3491 |
0.7326 | 44800 | 7.3385 |
0.7343 | 44900 | 7.3477 |
0.7359 | 45000 | 7.3107 |
0.7375 | 45100 | 7.3781 |
0.7392 | 45200 | 7.3259 |
0.7408 | 45300 | 7.3322 |
0.7424 | 45400 | 7.4162 |
0.7441 | 45500 | 7.3467 |
0.7457 | 45600 | 7.3858 |
0.7474 | 45700 | 7.3533 |
0.7490 | 45800 | 7.4116 |
0.7506 | 45900 | 7.3483 |
0.7523 | 46000 | 7.2907 |
0.7539 | 46100 | 7.3332 |
0.7555 | 46200 | 7.2816 |
0.7572 | 46300 | 7.4065 |
0.7588 | 46400 | 7.3926 |
0.7604 | 46500 | 7.4213 |
0.7621 | 46600 | 7.5124 |
0.7637 | 46700 | 7.3141 |
0.7653 | 46800 | 7.2922 |
0.7670 | 46900 | 7.4721 |
0.7686 | 47000 | 7.2959 |
0.7702 | 47100 | 7.3431 |
0.7719 | 47200 | 7.4238 |
0.7735 | 47300 | 7.3423 |
0.7752 | 47400 | 7.3408 |
0.7768 | 47500 | 7.2973 |
0.7784 | 47600 | 7.3127 |
0.7801 | 47700 | 7.391 |
0.7817 | 47800 | 7.2829 |
0.7833 | 47900 | 7.2725 |
0.7850 | 48000 | 7.3021 |
0.7866 | 48100 | 7.522 |
0.7882 | 48200 | 7.2864 |
0.7899 | 48300 | 7.3879 |
0.7915 | 48400 | 7.3804 |
0.7931 | 48500 | 7.3101 |
0.7948 | 48600 | 7.3957 |
0.7964 | 48700 | 7.2516 |
0.7981 | 48800 | 7.2707 |
0.7997 | 48900 | 7.4598 |
0.8013 | 49000 | 7.3174 |
0.8030 | 49100 | 7.3302 |
0.8046 | 49200 | 7.3706 |
0.8062 | 49300 | 7.4527 |
0.8079 | 49400 | 7.3 |
0.8095 | 49500 | 7.3419 |
0.8111 | 49600 | 7.2703 |
0.8128 | 49700 | 7.2812 |
0.8144 | 49800 | 7.4201 |
0.8160 | 49900 | 7.3289 |
0.8177 | 50000 | 7.3127 |
0.8193 | 50100 | 7.4242 |
0.8209 | 50200 | 7.3472 |
0.8226 | 50300 | 7.3606 |
0.8242 | 50400 | 7.2965 |
0.8259 | 50500 | 7.3875 |
0.8275 | 50600 | 7.2701 |
0.8291 | 50700 | 7.259 |
0.8308 | 50800 | 7.2969 |
0.8324 | 50900 | 7.4394 |
0.8340 | 51000 | 7.3581 |
0.8357 | 51100 | 7.39 |
0.8373 | 51200 | 7.3643 |
0.8389 | 51300 | 7.2921 |
0.8406 | 51400 | 7.3143 |
0.8422 | 51500 | 7.3363 |
0.8438 | 51600 | 7.3063 |
0.8455 | 51700 | 7.3726 |
0.8471 | 51800 | 7.2524 |
0.8487 | 51900 | 7.4085 |
0.8504 | 52000 | 7.3472 |
0.8520 | 52100 | 7.4392 |
0.8537 | 52200 | 7.4063 |
0.8553 | 52300 | 7.3257 |
0.8569 | 52400 | 7.2866 |
0.8586 | 52500 | 7.4021 |
0.8602 | 52600 | 7.2689 |
0.8618 | 52700 | 7.3521 |
0.8635 | 52800 | 7.3034 |
0.8651 | 52900 | 7.3527 |
0.8667 | 53000 | 7.335 |
0.8684 | 53100 | 7.3696 |
0.8700 | 53200 | 7.4368 |
0.8716 | 53300 | 7.2861 |
0.8733 | 53400 | 7.4529 |
0.8749 | 53500 | 7.3502 |
0.8765 | 53600 | 7.3355 |
0.8782 | 53700 | 7.3174 |
0.8798 | 53800 | 7.3378 |
0.8815 | 53900 | 7.2709 |
0.8831 | 54000 | 7.2881 |
0.8847 | 54100 | 7.2624 |
0.8864 | 54200 | 7.3725 |
0.8880 | 54300 | 7.2693 |
0.8896 | 54400 | 7.2983 |
0.8913 | 54500 | 7.2391 |
0.8929 | 54600 | 7.433 |
0.8945 | 54700 | 7.3061 |
0.8962 | 54800 | 7.2693 |
0.8978 | 54900 | 7.2513 |
0.8994 | 55000 | 7.3248 |
0.9011 | 55100 | 7.3206 |
0.9027 | 55200 | 7.4116 |
0.9043 | 55300 | 7.2521 |
0.9060 | 55400 | 7.3042 |
0.9076 | 55500 | 7.314 |
0.9093 | 55600 | 7.3024 |
0.9109 | 55700 | 7.2841 |
0.9125 | 55800 | 7.4199 |
0.9142 | 55900 | 7.3607 |
0.9158 | 56000 | 7.2728 |
0.9174 | 56100 | 7.3099 |
0.9191 | 56200 | 7.3691 |
0.9207 | 56300 | 7.2881 |
0.9223 | 56400 | 7.3155 |
0.9240 | 56500 | 7.455 |
0.9256 | 56600 | 7.3725 |
0.9272 | 56700 | 7.2735 |
0.9289 | 56800 | 7.3249 |
0.9305 | 56900 | 7.3662 |
0.9321 | 57000 | 7.419 |
0.9338 | 57100 | 7.364 |
0.9354 | 57200 | 7.289 |
0.9371 | 57300 | 7.2735 |
0.9387 | 57400 | 7.3368 |
0.9403 | 57500 | 7.2925 |
0.9420 | 57600 | 7.2443 |
0.9436 | 57700 | 7.3478 |
0.9452 | 57800 | 7.2528 |
0.9469 | 57900 | 7.2519 |
0.9485 | 58000 | 7.3557 |
0.9501 | 58100 | 7.2487 |
0.9518 | 58200 | 7.2763 |
0.9534 | 58300 | 7.2408 |
0.9550 | 58400 | 7.2685 |
0.9567 | 58500 | 7.3501 |
0.9583 | 58600 | 7.2317 |
0.9600 | 58700 | 7.2881 |
0.9616 | 58800 | 7.3157 |
0.9632 | 58900 | 7.2229 |
0.9649 | 59000 | 7.3597 |
0.9665 | 59100 | 7.3186 |
0.9681 | 59200 | 7.3675 |
0.9698 | 59300 | 7.3413 |
0.9714 | 59400 | 7.2692 |
0.9730 | 59500 | 7.3209 |
0.9747 | 59600 | 7.3498 |
0.9763 | 59700 | 7.3146 |
0.9779 | 59800 | 7.2832 |
0.9796 | 59900 | 7.3765 |
0.9812 | 60000 | 7.3916 |
0.9828 | 60100 | 7.2931 |
0.9845 | 60200 | 7.2765 |
0.9861 | 60300 | 7.3638 |
0.9878 | 60400 | 7.3035 |
0.9894 | 60500 | 7.3215 |
0.9910 | 60600 | 7.2872 |
0.9927 | 60700 | 7.2237 |
0.9943 | 60800 | 7.3137 |
0.9959 | 60900 | 7.3152 |
0.9976 | 61000 | 7.3608 |
0.9992 | 61100 | 7.2921 |
1.0008 | 61200 | 7.2274 |
1.0025 | 61300 | 7.2672 |
1.0041 | 61400 | 7.3674 |
1.0057 | 61500 | 7.3094 |
1.0074 | 61600 | 7.2118 |
1.0090 | 61700 | 7.3063 |
1.0106 | 61800 | 7.2649 |
1.0123 | 61900 | 7.2727 |
1.0139 | 62000 | 7.2473 |
1.0156 | 62100 | 7.2649 |
1.0172 | 62200 | 7.35 |
1.0188 | 62300 | 7.2631 |
1.0205 | 62400 | 7.2715 |
1.0221 | 62500 | 7.3328 |
1.0237 | 62600 | 7.2523 |
1.0254 | 62700 | 7.2752 |
1.0270 | 62800 | 7.3611 |
1.0286 | 62900 | 7.3405 |
1.0303 | 63000 | 7.2925 |
1.0319 | 63100 | 7.2284 |
1.0335 | 63200 | 7.3216 |
1.0352 | 63300 | 7.2805 |
1.0368 | 63400 | 7.4077 |
1.0384 | 63500 | 7.2059 |
1.0401 | 63600 | 7.3006 |
1.0417 | 63700 | 7.2715 |
1.0434 | 63800 | 7.2879 |
1.0450 | 63900 | 7.3043 |
1.0466 | 64000 | 7.3379 |
1.0483 | 64100 | 7.2326 |
1.0499 | 64200 | 7.2336 |
1.0515 | 64300 | 7.3712 |
1.0532 | 64400 | 7.1524 |
1.0548 | 64500 | 7.202 |
1.0564 | 64600 | 7.2632 |
1.0581 | 64700 | 7.2627 |
1.0597 | 64800 | 7.2534 |
1.0613 | 64900 | 7.3059 |
1.0630 | 65000 | 7.3292 |
1.0646 | 65100 | 7.3172 |
1.0662 | 65200 | 7.2423 |
1.0679 | 65300 | 7.2458 |
1.0695 | 65400 | 7.2681 |
1.0712 | 65500 | 7.2974 |
1.0728 | 65600 | 7.3866 |
1.0744 | 65700 | 7.2716 |
1.0761 | 65800 | 7.3154 |
1.0777 | 65900 | 7.1821 |
1.0793 | 66000 | 7.3136 |
1.0810 | 66100 | 7.2049 |
1.0826 | 66200 | 7.2742 |
1.0842 | 66300 | 7.238 |
1.0859 | 66400 | 7.2447 |
1.0875 | 66500 | 7.1865 |
1.0891 | 66600 | 7.3527 |
1.0908 | 66700 | 7.2212 |
1.0924 | 66800 | 7.2352 |
1.0940 | 66900 | 7.2332 |
1.0957 | 67000 | 7.2792 |
1.0973 | 67100 | 7.2603 |
1.0990 | 67200 | 7.1715 |
1.1006 | 67300 | 7.2222 |
1.1022 | 67400 | 7.2713 |
1.1039 | 67500 | 7.3203 |
1.1055 | 67600 | 7.2419 |
1.1071 | 67700 | 7.3449 |
1.1088 | 67800 | 7.3536 |
1.1104 | 67900 | 7.2384 |
1.1120 | 68000 | 7.311 |
1.1137 | 68100 | 7.2888 |
1.1153 | 68200 | 7.1715 |
1.1169 | 68300 | 7.2935 |
1.1186 | 68400 | 7.3365 |
1.1202 | 68500 | 7.327 |
1.1218 | 68600 | 7.175 |
1.1235 | 68700 | 7.2658 |
1.1251 | 68800 | 7.2048 |
1.1268 | 68900 | 7.304 |
1.1284 | 69000 | 7.2298 |
1.1300 | 69100 | 7.2357 |
1.1317 | 69200 | 7.2441 |
1.1333 | 69300 | 7.2333 |
1.1349 | 69400 | 7.2207 |
1.1366 | 69500 | 7.3227 |
1.1382 | 69600 | 7.2532 |
1.1398 | 69700 | 7.2096 |
1.1415 | 69800 | 7.2943 |
1.1431 | 69900 | 7.2858 |
1.1447 | 70000 | 7.2294 |
1.1464 | 70100 | 7.2744 |
1.1480 | 70200 | 7.2431 |
1.1497 | 70300 | 7.2513 |
1.1513 | 70400 | 7.291 |
1.1529 | 70500 | 7.2074 |
1.1546 | 70600 | 7.2191 |
1.1562 | 70700 | 7.2685 |
1.1578 | 70800 | 7.2441 |
1.1595 | 70900 | 7.4062 |
1.1611 | 71000 | 7.1991 |
1.1627 | 71100 | 7.2128 |
1.1644 | 71200 | 7.3431 |
1.1660 | 71300 | 7.3997 |
1.1676 | 71400 | 7.2139 |
1.1693 | 71500 | 7.2408 |
1.1709 | 71600 | 7.2873 |
1.1725 | 71700 | 7.2057 |
1.1742 | 71800 | 7.1855 |
1.1758 | 71900 | 7.2633 |
1.1775 | 72000 | 7.3066 |
1.1791 | 72100 | 7.3253 |
1.1807 | 72200 | 7.2647 |
1.1824 | 72300 | 7.181 |
1.1840 | 72400 | 7.2918 |
1.1856 | 72500 | 7.2447 |
1.1873 | 72600 | 7.2283 |
1.1889 | 72700 | 7.2672 |
1.1905 | 72800 | 7.2748 |
1.1922 | 72900 | 7.2319 |
1.1938 | 73000 | 7.2038 |
1.1954 | 73100 | 7.2999 |
1.1971 | 73200 | 7.3346 |
1.1987 | 73300 | 7.2448 |
1.2003 | 73400 | 7.2399 |
1.2020 | 73500 | 7.277 |
1.2036 | 73600 | 7.2367 |
1.2053 | 73700 | 7.2246 |
1.2069 | 73800 | 7.2548 |
1.2085 | 73900 | 7.3035 |
1.2102 | 74000 | 7.2042 |
1.2118 | 74100 | 7.198 |
1.2134 | 74200 | 7.2431 |
1.2151 | 74300 | 7.2699 |
1.2167 | 74400 | 7.3081 |
1.2183 | 74500 | 7.3925 |
1.2200 | 74600 | 7.2347 |
1.2216 | 74700 | 7.4031 |
1.2232 | 74800 | 7.2845 |
1.2249 | 74900 | 7.2402 |
1.2265 | 75000 | 7.2312 |
1.2281 | 75100 | 7.2786 |
1.2298 | 75200 | 7.2651 |
1.2314 | 75300 | 7.2238 |
1.2331 | 75400 | 7.2677 |
1.2347 | 75500 | 7.358 |
1.2363 | 75600 | 7.1785 |
1.2380 | 75700 | 7.2661 |
1.2396 | 75800 | 7.2905 |
1.2412 | 75900 | 7.3464 |
1.2429 | 76000 | 7.1859 |
1.2445 | 76100 | 7.2172 |
1.2461 | 76200 | 7.2781 |
1.2478 | 76300 | 7.2722 |
1.2494 | 76400 | 7.1868 |
1.2510 | 76500 | 7.1762 |
1.2527 | 76600 | 7.1755 |
1.2543 | 76700 | 7.2375 |
1.2559 | 76800 | 7.2447 |
1.2576 | 76900 | 7.1957 |
1.2592 | 77000 | 7.2081 |
1.2609 | 77100 | 7.3489 |
1.2625 | 77200 | 7.2171 |
1.2641 | 77300 | 7.2283 |
1.2658 | 77400 | 7.2665 |
1.2674 | 77500 | 7.2027 |
1.2690 | 77600 | 7.2112 |
1.2707 | 77700 | 7.3322 |
1.2723 | 77800 | 7.1551 |
1.2739 | 77900 | 7.312 |
1.2756 | 78000 | 7.2082 |
1.2772 | 78100 | 7.203 |
1.2788 | 78200 | 7.1676 |
1.2805 | 78300 | 7.1858 |
1.2821 | 78400 | 7.2436 |
1.2837 | 78500 | 7.2016 |
1.2854 | 78600 | 7.2311 |
1.2870 | 78700 | 7.1834 |
1.2887 | 78800 | 7.2474 |
1.2903 | 78900 | 7.3177 |
1.2919 | 79000 | 7.3093 |
1.2936 | 79100 | 7.2566 |
1.2952 | 79200 | 7.1785 |
1.2968 | 79300 | 7.2344 |
1.2985 | 79400 | 7.2815 |
1.3001 | 79500 | 7.1929 |
1.3017 | 79600 | 7.2579 |
1.3034 | 79700 | 7.2056 |
1.3050 | 79800 | 7.3351 |
1.3066 | 79900 | 7.1994 |
1.3083 | 80000 | 7.2705 |
1.3099 | 80100 | 7.3139 |
1.3116 | 80200 | 7.2614 |
1.3132 | 80300 | 7.1795 |
1.3148 | 80400 | 7.3145 |
1.3165 | 80500 | 7.3024 |
1.3181 | 80600 | 7.2076 |
1.3197 | 80700 | 7.2667 |
1.3214 | 80800 | 7.203 |
1.3230 | 80900 | 7.2894 |
1.3246 | 81000 | 7.2426 |
1.3263 | 81100 | 7.3295 |
1.3279 | 81200 | 7.1609 |
1.3295 | 81300 | 7.3292 |
1.3312 | 81400 | 7.2047 |
1.3328 | 81500 | 7.2645 |
1.3344 | 81600 | 7.2628 |
1.3361 | 81700 | 7.363 |
1.3377 | 81800 | 7.2298 |
1.3394 | 81900 | 7.1835 |
1.3410 | 82000 | 7.2034 |
1.3426 | 82100 | 7.2825 |
1.3443 | 82200 | 7.2385 |
1.3459 | 82300 | 7.3717 |
1.3475 | 82400 | 7.2601 |
1.3492 | 82500 | 7.14 |
1.3508 | 82600 | 7.1989 |
1.3524 | 82700 | 7.3454 |
1.3541 | 82800 | 7.2326 |
1.3557 | 82900 | 7.1448 |
1.3573 | 83000 | 7.3331 |
1.3590 | 83100 | 7.3108 |
1.3606 | 83200 | 7.1545 |
1.3622 | 83300 | 7.2615 |
1.3639 | 83400 | 7.2073 |
1.3655 | 83500 | 7.2805 |
1.3672 | 83600 | 7.1949 |
1.3688 | 83700 | 7.3958 |
1.3704 | 83800 | 7.3567 |
1.3721 | 83900 | 7.2097 |
1.3737 | 84000 | 7.3873 |
1.3753 | 84100 | 7.2167 |
1.3770 | 84200 | 7.1561 |
1.3786 | 84300 | 7.2695 |
1.3802 | 84400 | 7.2659 |
1.3819 | 84500 | 7.1914 |
1.3835 | 84600 | 7.3513 |
1.3851 | 84700 | 7.2083 |
1.3868 | 84800 | 7.1815 |
1.3884 | 84900 | 7.1791 |
1.3900 | 85000 | 7.2966 |
1.3917 | 85100 | 7.1682 |
1.3933 | 85200 | 7.163 |
1.3950 | 85300 | 7.2384 |
1.3966 | 85400 | 7.2641 |
1.3982 | 85500 | 7.2897 |
1.3999 | 85600 | 7.2003 |
1.4015 | 85700 | 7.1445 |
1.4031 | 85800 | 7.2939 |
1.4048 | 85900 | 7.2109 |
1.4064 | 86000 | 7.3391 |
1.4080 | 86100 | 7.2455 |
1.4097 | 86200 | 7.3384 |
1.4113 | 86300 | 7.2789 |
1.4129 | 86400 | 7.2253 |
1.4146 | 86500 | 7.2045 |
1.4162 | 86600 | 7.2715 |
1.4178 | 86700 | 7.1557 |
1.4195 | 86800 | 7.2064 |
1.4211 | 86900 | 7.2233 |
1.4228 | 87000 | 7.1618 |
1.4244 | 87100 | 7.259 |
1.4260 | 87200 | 7.1844 |
1.4277 | 87300 | 7.2255 |
1.4293 | 87400 | 7.2212 |
1.4309 | 87500 | 7.2605 |
1.4326 | 87600 | 7.287 |
1.4342 | 87700 | 7.2306 |
1.4358 | 87800 | 7.1867 |
1.4375 | 87900 | 7.163 |
1.4391 | 88000 | 7.2034 |
1.4407 | 88100 | 7.25 |
1.4424 | 88200 | 7.2781 |
1.4440 | 88300 | 7.1707 |
1.4456 | 88400 | 7.2171 |
1.4473 | 88500 | 7.2225 |
1.4489 | 88600 | 7.2039 |
1.4506 | 88700 | 7.2183 |
1.4522 | 88800 | 7.3452 |
1.4538 | 88900 | 7.2731 |
1.4555 | 89000 | 7.2704 |
1.4571 | 89100 | 7.2491 |
1.4587 | 89200 | 7.1967 |
1.4604 | 89300 | 7.1273 |
1.4620 | 89400 | 7.3229 |
1.4636 | 89500 | 7.1202 |
1.4653 | 89600 | 7.2365 |
1.4669 | 89700 | 7.1436 |
1.4685 | 89800 | 7.117 |
1.4702 | 89900 | 7.1736 |
1.4718 | 90000 | 7.2387 |
1.4735 | 90100 | 7.2144 |
1.4751 | 90200 | 7.1819 |
1.4767 | 90300 | 7.355 |
1.4784 | 90400 | 7.2249 |
1.4800 | 90500 | 7.2295 |
1.4816 | 90600 | 7.3626 |
1.4833 | 90700 | 7.2701 |
1.4849 | 90800 | 7.2152 |
1.4865 | 90900 | 7.2432 |
1.4882 | 91000 | 7.166 |
1.4898 | 91100 | 7.144 |
1.4914 | 91200 | 7.2671 |
1.4931 | 91300 | 7.189 |
1.4947 | 91400 | 7.2628 |
1.4963 | 91500 | 7.258 |
1.4980 | 91600 | 7.191 |
1.4996 | 91700 | 7.2458 |
1.5013 | 91800 | 7.2966 |
1.5029 | 91900 | 7.1938 |
1.5045 | 92000 | 7.1933 |
1.5062 | 92100 | 7.1925 |
1.5078 | 92200 | 7.2848 |
1.5094 | 92300 | 7.191 |
1.5111 | 92400 | 7.2225 |
1.5127 | 92500 | 7.2102 |
1.5143 | 92600 | 7.1933 |
1.5160 | 92700 | 7.0943 |
1.5176 | 92800 | 7.2869 |
1.5192 | 92900 | 7.263 |
1.5209 | 93000 | 7.1362 |
1.5225 | 93100 | 7.2756 |
1.5241 | 93200 | 7.315 |
1.5258 | 93300 | 7.2681 |
1.5274 | 93400 | 7.2584 |
1.5291 | 93500 | 7.1334 |
1.5307 | 93600 | 7.1853 |
1.5323 | 93700 | 7.0984 |
1.5340 | 93800 | 7.2932 |
1.5356 | 93900 | 7.1664 |
1.5372 | 94000 | 7.2162 |
1.5389 | 94100 | 7.2584 |
1.5405 | 94200 | 7.2293 |
1.5421 | 94300 | 7.212 |
1.5438 | 94400 | 7.1278 |
1.5454 | 94500 | 7.2018 |
1.5470 | 94600 | 7.1641 |
1.5487 | 94700 | 7.2488 |
1.5503 | 94800 | 7.2033 |
1.5519 | 94900 | 7.2038 |
1.5536 | 95000 | 7.3503 |
1.5552 | 95100 | 7.231 |
1.5569 | 95200 | 7.2417 |
1.5585 | 95300 | 7.3997 |
1.5601 | 95400 | 7.195 |
1.5618 | 95500 | 7.2201 |
1.5634 | 95600 | 7.2433 |
1.5650 | 95700 | 7.3198 |
1.5667 | 95800 | 7.2291 |
1.5683 | 95900 | 7.257 |
1.5699 | 96000 | 7.2843 |
1.5716 | 96100 | 7.1688 |
1.5732 | 96200 | 7.2803 |
1.5748 | 96300 | 7.2952 |
1.5765 | 96400 | 7.1823 |
1.5781 | 96500 | 7.2153 |
1.5797 | 96600 | 7.28 |
1.5814 | 96700 | 7.3577 |
1.5830 | 96800 | 7.1236 |
1.5847 | 96900 | 7.1463 |
1.5863 | 97000 | 7.1706 |
1.5879 | 97100 | 7.128 |
1.5896 | 97200 | 7.2604 |
1.5912 | 97300 | 7.1904 |
1.5928 | 97400 | 7.1805 |
1.5945 | 97500 | 7.2696 |
1.5961 | 97600 | 7.2077 |
1.5977 | 97700 | 7.1146 |
1.5994 | 97800 | 7.1935 |
1.6010 | 97900 | 7.2175 |
1.6026 | 98000 | 7.1328 |
1.6043 | 98100 | 7.1975 |
1.6059 | 98200 | 7.214 |
1.6075 | 98300 | 7.209 |
1.6092 | 98400 | 7.3163 |
1.6108 | 98500 | 7.2076 |
1.6125 | 98600 | 7.2207 |
1.6141 | 98700 | 7.2498 |
1.6157 | 98800 | 7.1402 |
1.6174 | 98900 | 7.1557 |
1.6190 | 99000 | 7.2513 |
1.6206 | 99100 | 7.1799 |
1.6223 | 99200 | 7.1575 |
1.6239 | 99300 | 7.2611 |
1.6255 | 99400 | 7.2935 |
1.6272 | 99500 | 7.2455 |
1.6288 | 99600 | 7.2989 |
1.6304 | 99700 | 7.1742 |
1.6321 | 99800 | 7.2553 |
1.6337 | 99900 | 7.198 |
1.6353 | 100000 | 7.2551 |
1.6370 | 100100 | 7.2795 |
1.6386 | 100200 | 7.1472 |
1.6403 | 100300 | 7.2149 |
1.6419 | 100400 | 7.2685 |
1.6435 | 100500 | 7.2504 |
1.6452 | 100600 | 7.205 |
1.6468 | 100700 | 7.1591 |
1.6484 | 100800 | 7.2839 |
1.6501 | 100900 | 7.257 |
1.6517 | 101000 | 7.2206 |
1.6533 | 101100 | 7.1539 |
1.6550 | 101200 | 7.1568 |
1.6566 | 101300 | 7.2602 |
1.6582 | 101400 | 7.3935 |
1.6599 | 101500 | 7.1626 |
1.6615 | 101600 | 7.1664 |
1.6632 | 101700 | 7.1269 |
1.6648 | 101800 | 7.2743 |
1.6664 | 101900 | 7.1909 |
1.6681 | 102000 | 7.1663 |
1.6697 | 102100 | 7.1403 |
1.6713 | 102200 | 7.2911 |
1.6730 | 102300 | 7.1812 |
1.6746 | 102400 | 7.2591 |
1.6762 | 102500 | 7.1834 |
1.6779 | 102600 | 7.3092 |
1.6795 | 102700 | 7.1196 |
1.6811 | 102800 | 7.2028 |
1.6828 | 102900 | 7.263 |
1.6844 | 103000 | 7.1883 |
1.6860 | 103100 | 7.2059 |
1.6877 | 103200 | 7.1645 |
1.6893 | 103300 | 7.2974 |
1.6910 | 103400 | 7.2004 |
1.6926 | 103500 | 7.2515 |
1.6942 | 103600 | 7.2385 |
1.6959 | 103700 | 7.2995 |
1.6975 | 103800 | 7.3026 |
1.6991 | 103900 | 7.192 |
1.7008 | 104000 | 7.2307 |
1.7024 | 104100 | 7.3336 |
1.7040 | 104200 | 7.2262 |
1.7057 | 104300 | 7.2228 |
1.7073 | 104400 | 7.1587 |
1.7089 | 104500 | 7.2922 |
1.7106 | 104600 | 7.1341 |
1.7122 | 104700 | 7.1274 |
1.7138 | 104800 | 7.0825 |
1.7155 | 104900 | 7.143 |
1.7171 | 105000 | 7.1935 |
1.7188 | 105100 | 7.1841 |
1.7204 | 105200 | 7.1301 |
1.7220 | 105300 | 7.2685 |
1.7237 | 105400 | 7.1137 |
1.7253 | 105500 | 7.1538 |
1.7269 | 105600 | 7.211 |
1.7286 | 105700 | 7.2827 |
1.7302 | 105800 | 7.2475 |
1.7318 | 105900 | 7.2251 |
1.7335 | 106000 | 7.1754 |
1.7351 | 106100 | 7.2269 |
1.7367 | 106200 | 7.2586 |
1.7384 | 106300 | 7.1901 |
1.7400 | 106400 | 7.3009 |
1.7416 | 106500 | 7.245 |
1.7433 | 106600 | 7.2958 |
1.7449 | 106700 | 7.251 |
1.7466 | 106800 | 7.2217 |
1.7482 | 106900 | 7.2433 |
1.7498 | 107000 | 7.2166 |
1.7515 | 107100 | 7.2322 |
1.7531 | 107200 | 7.2559 |
1.7547 | 107300 | 7.1228 |
1.7564 | 107400 | 7.1692 |
1.7580 | 107500 | 7.1959 |
1.7596 | 107600 | 7.2923 |
1.7613 | 107700 | 7.2951 |
1.7629 | 107800 | 7.3977 |
1.7645 | 107900 | 7.1821 |
1.7662 | 108000 | 7.2629 |
1.7678 | 108100 | 7.1958 |
1.7694 | 108200 | 7.0956 |
1.7711 | 108300 | 7.279 |
1.7727 | 108400 | 7.1452 |
1.7744 | 108500 | 7.2905 |
1.7760 | 108600 | 7.1713 |
1.7776 | 108700 | 7.1666 |
1.7793 | 108800 | 7.2494 |
1.7809 | 108900 | 7.243 |
1.7825 | 109000 | 7.2904 |
1.7842 | 109100 | 7.2237 |
1.7858 | 109200 | 7.2001 |
1.7874 | 109300 | 7.2414 |
1.7891 | 109400 | 7.2922 |
1.7907 | 109500 | 7.2264 |
1.7923 | 109600 | 7.1515 |
1.7940 | 109700 | 7.1905 |
1.7956 | 109800 | 7.1717 |
1.7972 | 109900 | 7.2072 |
1.7989 | 110000 | 7.1213 |
1.8005 | 110100 | 7.2218 |
1.8022 | 110200 | 7.1974 |
1.8038 | 110300 | 7.0928 |
1.8054 | 110400 | 7.1477 |
1.8071 | 110500 | 7.1406 |
1.8087 | 110600 | 7.2329 |
1.8103 | 110700 | 7.1725 |
1.8120 | 110800 | 7.2708 |
1.8136 | 110900 | 7.2481 |
1.8152 | 111000 | 7.1359 |
1.8169 | 111100 | 7.2038 |
1.8185 | 111200 | 7.2292 |
1.8201 | 111300 | 7.2504 |
1.8218 | 111400 | 7.2571 |
1.8234 | 111500 | 7.1655 |
1.8251 | 111600 | 7.3047 |
1.8267 | 111700 | 7.142 |
1.8283 | 111800 | 7.2475 |
1.8300 | 111900 | 7.2443 |
1.8316 | 112000 | 7.2015 |
1.8332 | 112100 | 7.1179 |
1.8349 | 112200 | 7.123 |
1.8365 | 112300 | 7.3373 |
1.8381 | 112400 | 7.1966 |
1.8398 | 112500 | 7.2326 |
1.8414 | 112600 | 7.1472 |
1.8430 | 112700 | 7.1406 |
1.8447 | 112800 | 7.313 |
1.8463 | 112900 | 7.2112 |
1.8479 | 113000 | 7.2402 |
1.8496 | 113100 | 7.2575 |
1.8512 | 113200 | 7.1365 |
1.8529 | 113300 | 7.1803 |
1.8545 | 113400 | 7.2568 |
1.8561 | 113500 | 7.3168 |
1.8578 | 113600 | 7.1657 |
1.8594 | 113700 | 7.2552 |
1.8610 | 113800 | 7.1183 |
1.8627 | 113900 | 7.1829 |
1.8643 | 114000 | 7.2194 |
1.8659 | 114100 | 7.2145 |
1.8676 | 114200 | 7.1671 |
1.8692 | 114300 | 7.1594 |
1.8708 | 114400 | 7.0844 |
1.8725 | 114500 | 7.1534 |
1.8741 | 114600 | 7.1934 |
1.8757 | 114700 | 7.1685 |
1.8774 | 114800 | 7.2746 |
1.8790 | 114900 | 7.1504 |
1.8807 | 115000 | 7.1447 |
1.8823 | 115100 | 7.1682 |
1.8839 | 115200 | 7.2072 |
1.8856 | 115300 | 7.098 |
1.8872 | 115400 | 7.1204 |
1.8888 | 115500 | 7.0923 |
1.8905 | 115600 | 7.183 |
1.8921 | 115700 | 7.1502 |
1.8937 | 115800 | 7.369 |
1.8954 | 115900 | 7.314 |
1.8970 | 116000 | 7.1633 |
1.8986 | 116100 | 7.1789 |
1.9003 | 116200 | 7.1506 |
1.9019 | 116300 | 7.1516 |
1.9035 | 116400 | 7.2381 |
1.9052 | 116500 | 7.147 |
1.9068 | 116600 | 7.184 |
1.9085 | 116700 | 7.2773 |
1.9101 | 116800 | 7.1546 |
1.9117 | 116900 | 7.1855 |
1.9134 | 117000 | 7.2159 |
1.9150 | 117100 | 7.2668 |
1.9166 | 117200 | 7.2658 |
1.9183 | 117300 | 7.2767 |
1.9199 | 117400 | 7.101 |
1.9215 | 117500 | 7.2031 |
1.9232 | 117600 | 7.2688 |
1.9248 | 117700 | 7.1934 |
1.9264 | 117800 | 7.1508 |
1.9281 | 117900 | 7.1479 |
1.9297 | 118000 | 7.3306 |
1.9313 | 118100 | 7.2065 |
1.9330 | 118200 | 7.1814 |
1.9346 | 118300 | 7.1969 |
1.9363 | 118400 | 7.1315 |
1.9379 | 118500 | 7.2007 |
1.9395 | 118600 | 7.2288 |
1.9412 | 118700 | 7.191 |
1.9428 | 118800 | 7.2268 |
1.9444 | 118900 | 7.1451 |
1.9461 | 119000 | 7.1345 |
1.9477 | 119100 | 7.2011 |
1.9493 | 119200 | 7.1849 |
1.9510 | 119300 | 7.2218 |
1.9526 | 119400 | 7.1971 |
1.9542 | 119500 | 7.3396 |
1.9559 | 119600 | 7.2104 |
1.9575 | 119700 | 7.2039 |
1.9591 | 119800 | 7.2464 |
1.9608 | 119900 | 7.3043 |
1.9624 | 120000 | 7.4122 |
1.9641 | 120100 | 7.1111 |
1.9657 | 120200 | 7.2129 |
1.9673 | 120300 | 7.1588 |
1.9690 | 120400 | 7.1101 |
1.9706 | 120500 | 7.352 |
1.9722 | 120600 | 7.1776 |
1.9739 | 120700 | 7.2707 |
1.9755 | 120800 | 7.1185 |
1.9771 | 120900 | 7.1938 |
1.9788 | 121000 | 7.2589 |
1.9804 | 121100 | 7.2122 |
1.9820 | 121200 | 7.2125 |
1.9837 | 121300 | 7.095 |
1.9853 | 121400 | 7.1098 |
1.9869 | 121500 | 7.2205 |
1.9886 | 121600 | 7.1645 |
1.9902 | 121700 | 7.3004 |
1.9919 | 121800 | 7.2379 |
1.9935 | 121900 | 7.1142 |
1.9951 | 122000 | 7.2685 |
1.9968 | 122100 | 7.214 |
1.9984 | 122200 | 7.1726 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for youssefkhalil320/all-MiniLM-L6-v16-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2