all-MiniLM-L6-v16-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'ramdan tagine',
    'glass',
    'samsung',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0016 100 13.8388
0.0033 200 13.6758
0.0049 300 13.2027
0.0065 400 12.9865
0.0082 500 12.4647
0.0098 600 11.9259
0.0114 700 11.514
0.0131 800 10.7788
0.0147 900 10.2176
0.0164 1000 9.8098
0.0180 1100 9.4029
0.0196 1200 9.0311
0.0213 1300 8.8268
0.0229 1400 8.6939
0.0245 1500 8.5978
0.0262 1600 8.5436
0.0278 1700 8.4912
0.0294 1800 8.4454
0.0311 1900 8.4029
0.0327 2000 8.3616
0.0343 2100 8.3393
0.0360 2200 8.3268
0.0376 2300 8.2938
0.0392 2400 8.2529
0.0409 2500 8.2363
0.0425 2600 8.2313
0.0442 2700 8.2013
0.0458 2800 8.1815
0.0474 2900 8.1639
0.0491 3000 8.1823
0.0507 3100 8.1366
0.0523 3200 8.1295
0.0540 3300 8.1365
0.0556 3400 8.1125
0.0572 3500 8.1136
0.0589 3600 8.1254
0.0605 3700 8.0799
0.0621 3800 8.0873
0.0638 3900 8.0774
0.0654 4000 8.0598
0.0670 4100 8.0577
0.0687 4200 8.0371
0.0703 4300 8.0379
0.0720 4400 8.0426
0.0736 4500 8.0091
0.0752 4600 7.9718
0.0769 4700 7.9905
0.0785 4800 8.009
0.0801 4900 7.9921
0.0818 5000 7.995
0.0834 5100 7.977
0.0850 5200 7.9612
0.0867 5300 7.9783
0.0883 5400 7.9462
0.0899 5500 7.9508
0.0916 5600 7.9445
0.0932 5700 7.9308
0.0949 5800 7.9476
0.0965 5900 7.9107
0.0981 6000 7.8842
0.0998 6100 7.9056
0.1014 6200 7.91
0.1030 6300 7.8844
0.1047 6400 7.8953
0.1063 6500 7.8874
0.1079 6600 7.9254
0.1096 6700 7.9131
0.1112 6800 7.8585
0.1128 6900 7.9062
0.1145 7000 7.8495
0.1161 7100 7.8944
0.1177 7200 7.8892
0.1194 7300 7.838
0.1210 7400 7.8807
0.1227 7500 7.8692
0.1243 7600 7.8472
0.1259 7700 7.8463
0.1276 7800 7.864
0.1292 7900 7.8081
0.1308 8000 7.8333
0.1325 8100 7.8473
0.1341 8200 7.8218
0.1357 8300 7.8336
0.1374 8400 7.8246
0.1390 8500 7.8244
0.1406 8600 7.832
0.1423 8700 7.7924
0.1439 8800 7.7813
0.1455 8900 7.8092
0.1472 9000 7.8171
0.1488 9100 7.7756
0.1505 9200 7.7841
0.1521 9300 7.7821
0.1537 9400 7.8078
0.1554 9500 7.7754
0.1570 9600 7.7715
0.1586 9700 7.739
0.1603 9800 7.772
0.1619 9900 7.7508
0.1635 10000 7.8111
0.1652 10100 7.7507
0.1668 10200 7.7508
0.1684 10300 7.7617
0.1701 10400 7.7572
0.1717 10500 7.7416
0.1733 10600 7.7713
0.1750 10700 7.741
0.1766 10800 7.7305
0.1783 10900 7.7337
0.1799 11000 7.7444
0.1815 11100 7.73
0.1832 11200 7.7371
0.1848 11300 7.7606
0.1864 11400 7.7075
0.1881 11500 7.6909
0.1897 11600 7.7074
0.1913 11700 7.7021
0.1930 11800 7.7066
0.1946 11900 7.7203
0.1962 12000 7.7375
0.1979 12100 7.6847
0.1995 12200 7.7313
0.2011 12300 7.7125
0.2028 12400 7.652
0.2044 12500 7.6687
0.2061 12600 7.6816
0.2077 12700 7.6722
0.2093 12800 7.6984
0.2110 12900 7.6941
0.2126 13000 7.6875
0.2142 13100 7.6958
0.2159 13200 7.7064
0.2175 13300 7.6761
0.2191 13400 7.68
0.2208 13500 7.6614
0.2224 13600 7.673
0.2240 13700 7.6679
0.2257 13800 7.641
0.2273 13900 7.6509
0.2289 14000 7.6539
0.2306 14100 7.6788
0.2322 14200 7.6631
0.2339 14300 7.6815
0.2355 14400 7.6796
0.2371 14500 7.6432
0.2388 14600 7.6244
0.2404 14700 7.7122
0.2420 14800 7.6317
0.2437 14900 7.66
0.2453 15000 7.6164
0.2469 15100 7.6566
0.2486 15200 7.6487
0.2502 15300 7.6119
0.2518 15400 7.606
0.2535 15500 7.6114
0.2551 15600 7.6255
0.2567 15700 7.6003
0.2584 15800 7.5847
0.2600 15900 7.6303
0.2617 16000 7.661
0.2633 16100 7.6191
0.2649 16200 7.6152
0.2666 16300 7.6118
0.2682 16400 7.6169
0.2698 16500 7.6043
0.2715 16600 7.6195
0.2731 16700 7.5836
0.2747 16800 7.6048
0.2764 16900 7.6036
0.2780 17000 7.608
0.2796 17100 7.5983
0.2813 17200 7.644
0.2829 17300 7.6115
0.2846 17400 7.6256
0.2862 17500 7.5924
0.2878 17600 7.6019
0.2895 17700 7.6021
0.2911 17800 7.6095
0.2927 17900 7.6554
0.2944 18000 7.6036
0.2960 18100 7.577
0.2976 18200 7.5874
0.2993 18300 7.5839
0.3009 18400 7.5742
0.3025 18500 7.6244
0.3042 18600 7.5502
0.3058 18700 7.5805
0.3074 18800 7.5563
0.3091 18900 7.595
0.3107 19000 7.5715
0.3124 19100 7.6142
0.3140 19200 7.541
0.3156 19300 7.5641
0.3173 19400 7.6212
0.3189 19500 7.61
0.3205 19600 7.5853
0.3222 19700 7.5599
0.3238 19800 7.5795
0.3254 19900 7.6039
0.3271 20000 7.541
0.3287 20100 7.5619
0.3303 20200 7.5246
0.3320 20300 7.6084
0.3336 20400 7.5701
0.3352 20500 7.5451
0.3369 20600 7.537
0.3385 20700 7.5828
0.3402 20800 7.549
0.3418 20900 7.5503
0.3434 21000 7.5291
0.3451 21100 7.5628
0.3467 21200 7.597
0.3483 21300 7.5617
0.3500 21400 7.5053
0.3516 21500 7.5785
0.3532 21600 7.5539
0.3549 21700 7.5828
0.3565 21800 7.5594
0.3581 21900 7.5109
0.3598 22000 7.5413
0.3614 22100 7.503
0.3630 22200 7.5658
0.3647 22300 7.5586
0.3663 22400 7.6085
0.3680 22500 7.5849
0.3696 22600 7.5378
0.3712 22700 7.5343
0.3729 22800 7.5606
0.3745 22900 7.5982
0.3761 23000 7.5509
0.3778 23100 7.532
0.3794 23200 7.5014
0.3810 23300 7.5394
0.3827 23400 7.5351
0.3843 23500 7.5135
0.3859 23600 7.5168
0.3876 23700 7.5525
0.3892 23800 7.4786
0.3908 23900 7.5134
0.3925 24000 7.5052
0.3941 24100 7.5304
0.3958 24200 7.4864
0.3974 24300 7.5435
0.3990 24400 7.5637
0.4007 24500 7.528
0.4023 24600 7.5458
0.4039 24700 7.5656
0.4056 24800 7.4848
0.4072 24900 7.4949
0.4088 25000 7.5474
0.4105 25100 7.4909
0.4121 25200 7.5029
0.4137 25300 7.5202
0.4154 25400 7.5393
0.4170 25500 7.5203
0.4186 25600 7.455
0.4203 25700 7.526
0.4219 25800 7.4839
0.4236 25900 7.4724
0.4252 26000 7.4277
0.4268 26100 7.5372
0.4285 26200 7.4817
0.4301 26300 7.4961
0.4317 26400 7.4749
0.4334 26500 7.6095
0.4350 26600 7.4773
0.4366 26700 7.4994
0.4383 26800 7.4959
0.4399 26900 7.4702
0.4415 27000 7.4914
0.4432 27100 7.5124
0.4448 27200 7.5087
0.4465 27300 7.4701
0.4481 27400 7.4348
0.4497 27500 7.4994
0.4514 27600 7.4949
0.4530 27700 7.4409
0.4546 27800 7.4319
0.4563 27900 7.4545
0.4579 28000 7.5283
0.4595 28100 7.4309
0.4612 28200 7.4703
0.4628 28300 7.4963
0.4644 28400 7.5041
0.4661 28500 7.4346
0.4677 28600 7.4382
0.4693 28700 7.4151
0.4710 28800 7.5072
0.4726 28900 7.4357
0.4743 29000 7.4584
0.4759 29100 7.4853
0.4775 29200 7.486
0.4792 29300 7.4955
0.4808 29400 7.4086
0.4824 29500 7.4797
0.4841 29600 7.4295
0.4857 29700 7.5126
0.4873 29800 7.4834
0.4890 29900 7.4265
0.4906 30000 7.4643
0.4922 30100 7.4576
0.4939 30200 7.4444
0.4955 30300 7.4734
0.4971 30400 7.4238
0.4988 30500 7.4368
0.5004 30600 7.4485
0.5021 30700 7.3991
0.5037 30800 7.5196
0.5053 30900 7.4278
0.5070 31000 7.3866
0.5086 31100 7.524
0.5102 31200 7.4102
0.5119 31300 7.4421
0.5135 31400 7.4615
0.5151 31500 7.4866
0.5168 31600 7.4128
0.5184 31700 7.3935
0.5200 31800 7.4738
0.5217 31900 7.4116
0.5233 32000 7.4334
0.5249 32100 7.4907
0.5266 32200 7.4142
0.5282 32300 7.4495
0.5299 32400 7.4323
0.5315 32500 7.424
0.5331 32600 7.3877
0.5348 32700 7.449
0.5364 32800 7.468
0.5380 32900 7.4253
0.5397 33000 7.475
0.5413 33100 7.3939
0.5429 33200 7.4668
0.5446 33300 7.5031
0.5462 33400 7.4263
0.5478 33500 7.5039
0.5495 33600 7.392
0.5511 33700 7.4652
0.5527 33800 7.4136
0.5544 33900 7.4503
0.5560 34000 7.3902
0.5577 34100 7.4782
0.5593 34200 7.4757
0.5609 34300 7.3712
0.5626 34400 7.4433
0.5642 34500 7.4549
0.5658 34600 7.4112
0.5675 34700 7.3975
0.5691 34800 7.4119
0.5707 34900 7.3947
0.5724 35000 7.4854
0.5740 35100 7.5613
0.5756 35200 7.4618
0.5773 35300 7.515
0.5789 35400 7.3594
0.5805 35500 7.4234
0.5822 35600 7.4534
0.5838 35700 7.4053
0.5855 35800 7.3663
0.5871 35900 7.3857
0.5887 36000 7.3689
0.5904 36100 7.4165
0.5920 36200 7.3795
0.5936 36300 7.3836
0.5953 36400 7.4077
0.5969 36500 7.3843
0.5985 36600 7.3774
0.6002 36700 7.4366
0.6018 36800 7.4714
0.6034 36900 7.4584
0.6051 37000 7.3623
0.6067 37100 7.4035
0.6084 37200 7.365
0.6100 37300 7.4943
0.6116 37400 7.4059
0.6133 37500 7.3909
0.6149 37600 7.3231
0.6165 37700 7.412
0.6182 37800 7.3996
0.6198 37900 7.3389
0.6214 38000 7.402
0.6231 38100 7.465
0.6247 38200 7.3514
0.6263 38300 7.3865
0.6280 38400 7.4873
0.6296 38500 7.4416
0.6312 38600 7.3992
0.6329 38700 7.3743
0.6345 38800 7.4035
0.6362 38900 7.3766
0.6378 39000 7.3851
0.6394 39100 7.3633
0.6411 39200 7.3937
0.6427 39300 7.4384
0.6443 39400 7.4224
0.6460 39500 7.4045
0.6476 39600 7.3564
0.6492 39700 7.3494
0.6509 39800 7.3939
0.6525 39900 7.3973
0.6541 40000 7.3799
0.6558 40100 7.3509
0.6574 40200 7.3799
0.6590 40300 7.4378
0.6607 40400 7.3407
0.6623 40500 7.3713
0.6640 40600 7.3913
0.6656 40700 7.3822
0.6672 40800 7.3421
0.6689 40900 7.4415
0.6705 41000 7.3794
0.6721 41100 7.3486
0.6738 41200 7.3653
0.6754 41300 7.3587
0.6770 41400 7.4195
0.6787 41500 7.4282
0.6803 41600 7.385
0.6819 41700 7.3735
0.6836 41800 7.4122
0.6852 41900 7.4305
0.6868 42000 7.4394
0.6885 42100 7.4004
0.6901 42200 7.3411
0.6918 42300 7.384
0.6934 42400 7.3436
0.6950 42500 7.4166
0.6967 42600 7.3831
0.6983 42700 7.3274
0.6999 42800 7.3397
0.7016 42900 7.4724
0.7032 43000 7.3562
0.7048 43100 7.3559
0.7065 43200 7.4245
0.7081 43300 7.4727
0.7097 43400 7.3575
0.7114 43500 7.296
0.7130 43600 7.4019
0.7146 43700 7.3603
0.7163 43800 7.3705
0.7179 43900 7.3858
0.7196 44000 7.3836
0.7212 44100 7.3931
0.7228 44200 7.3568
0.7245 44300 7.3929
0.7261 44400 7.3522
0.7277 44500 7.3117
0.7294 44600 7.4005
0.7310 44700 7.3491
0.7326 44800 7.3385
0.7343 44900 7.3477
0.7359 45000 7.3107
0.7375 45100 7.3781
0.7392 45200 7.3259
0.7408 45300 7.3322
0.7424 45400 7.4162
0.7441 45500 7.3467
0.7457 45600 7.3858
0.7474 45700 7.3533
0.7490 45800 7.4116
0.7506 45900 7.3483
0.7523 46000 7.2907
0.7539 46100 7.3332
0.7555 46200 7.2816
0.7572 46300 7.4065
0.7588 46400 7.3926
0.7604 46500 7.4213
0.7621 46600 7.5124
0.7637 46700 7.3141
0.7653 46800 7.2922
0.7670 46900 7.4721
0.7686 47000 7.2959
0.7702 47100 7.3431
0.7719 47200 7.4238
0.7735 47300 7.3423
0.7752 47400 7.3408
0.7768 47500 7.2973
0.7784 47600 7.3127
0.7801 47700 7.391
0.7817 47800 7.2829
0.7833 47900 7.2725
0.7850 48000 7.3021
0.7866 48100 7.522
0.7882 48200 7.2864
0.7899 48300 7.3879
0.7915 48400 7.3804
0.7931 48500 7.3101
0.7948 48600 7.3957
0.7964 48700 7.2516
0.7981 48800 7.2707
0.7997 48900 7.4598
0.8013 49000 7.3174
0.8030 49100 7.3302
0.8046 49200 7.3706
0.8062 49300 7.4527
0.8079 49400 7.3
0.8095 49500 7.3419
0.8111 49600 7.2703
0.8128 49700 7.2812
0.8144 49800 7.4201
0.8160 49900 7.3289
0.8177 50000 7.3127
0.8193 50100 7.4242
0.8209 50200 7.3472
0.8226 50300 7.3606
0.8242 50400 7.2965
0.8259 50500 7.3875
0.8275 50600 7.2701
0.8291 50700 7.259
0.8308 50800 7.2969
0.8324 50900 7.4394
0.8340 51000 7.3581
0.8357 51100 7.39
0.8373 51200 7.3643
0.8389 51300 7.2921
0.8406 51400 7.3143
0.8422 51500 7.3363
0.8438 51600 7.3063
0.8455 51700 7.3726
0.8471 51800 7.2524
0.8487 51900 7.4085
0.8504 52000 7.3472
0.8520 52100 7.4392
0.8537 52200 7.4063
0.8553 52300 7.3257
0.8569 52400 7.2866
0.8586 52500 7.4021
0.8602 52600 7.2689
0.8618 52700 7.3521
0.8635 52800 7.3034
0.8651 52900 7.3527
0.8667 53000 7.335
0.8684 53100 7.3696
0.8700 53200 7.4368
0.8716 53300 7.2861
0.8733 53400 7.4529
0.8749 53500 7.3502
0.8765 53600 7.3355
0.8782 53700 7.3174
0.8798 53800 7.3378
0.8815 53900 7.2709
0.8831 54000 7.2881
0.8847 54100 7.2624
0.8864 54200 7.3725
0.8880 54300 7.2693
0.8896 54400 7.2983
0.8913 54500 7.2391
0.8929 54600 7.433
0.8945 54700 7.3061
0.8962 54800 7.2693
0.8978 54900 7.2513
0.8994 55000 7.3248
0.9011 55100 7.3206
0.9027 55200 7.4116
0.9043 55300 7.2521
0.9060 55400 7.3042
0.9076 55500 7.314
0.9093 55600 7.3024
0.9109 55700 7.2841
0.9125 55800 7.4199
0.9142 55900 7.3607
0.9158 56000 7.2728
0.9174 56100 7.3099
0.9191 56200 7.3691
0.9207 56300 7.2881
0.9223 56400 7.3155
0.9240 56500 7.455
0.9256 56600 7.3725
0.9272 56700 7.2735
0.9289 56800 7.3249
0.9305 56900 7.3662
0.9321 57000 7.419
0.9338 57100 7.364
0.9354 57200 7.289
0.9371 57300 7.2735
0.9387 57400 7.3368
0.9403 57500 7.2925
0.9420 57600 7.2443
0.9436 57700 7.3478
0.9452 57800 7.2528
0.9469 57900 7.2519
0.9485 58000 7.3557
0.9501 58100 7.2487
0.9518 58200 7.2763
0.9534 58300 7.2408
0.9550 58400 7.2685
0.9567 58500 7.3501
0.9583 58600 7.2317
0.9600 58700 7.2881
0.9616 58800 7.3157
0.9632 58900 7.2229
0.9649 59000 7.3597
0.9665 59100 7.3186
0.9681 59200 7.3675
0.9698 59300 7.3413
0.9714 59400 7.2692
0.9730 59500 7.3209
0.9747 59600 7.3498
0.9763 59700 7.3146
0.9779 59800 7.2832
0.9796 59900 7.3765
0.9812 60000 7.3916
0.9828 60100 7.2931
0.9845 60200 7.2765
0.9861 60300 7.3638
0.9878 60400 7.3035
0.9894 60500 7.3215
0.9910 60600 7.2872
0.9927 60700 7.2237
0.9943 60800 7.3137
0.9959 60900 7.3152
0.9976 61000 7.3608
0.9992 61100 7.2921
1.0008 61200 7.2274
1.0025 61300 7.2672
1.0041 61400 7.3674
1.0057 61500 7.3094
1.0074 61600 7.2118
1.0090 61700 7.3063
1.0106 61800 7.2649
1.0123 61900 7.2727
1.0139 62000 7.2473
1.0156 62100 7.2649
1.0172 62200 7.35
1.0188 62300 7.2631
1.0205 62400 7.2715
1.0221 62500 7.3328
1.0237 62600 7.2523
1.0254 62700 7.2752
1.0270 62800 7.3611
1.0286 62900 7.3405
1.0303 63000 7.2925
1.0319 63100 7.2284
1.0335 63200 7.3216
1.0352 63300 7.2805
1.0368 63400 7.4077
1.0384 63500 7.2059
1.0401 63600 7.3006
1.0417 63700 7.2715
1.0434 63800 7.2879
1.0450 63900 7.3043
1.0466 64000 7.3379
1.0483 64100 7.2326
1.0499 64200 7.2336
1.0515 64300 7.3712
1.0532 64400 7.1524
1.0548 64500 7.202
1.0564 64600 7.2632
1.0581 64700 7.2627
1.0597 64800 7.2534
1.0613 64900 7.3059
1.0630 65000 7.3292
1.0646 65100 7.3172
1.0662 65200 7.2423
1.0679 65300 7.2458
1.0695 65400 7.2681
1.0712 65500 7.2974
1.0728 65600 7.3866
1.0744 65700 7.2716
1.0761 65800 7.3154
1.0777 65900 7.1821
1.0793 66000 7.3136
1.0810 66100 7.2049
1.0826 66200 7.2742
1.0842 66300 7.238
1.0859 66400 7.2447
1.0875 66500 7.1865
1.0891 66600 7.3527
1.0908 66700 7.2212
1.0924 66800 7.2352
1.0940 66900 7.2332
1.0957 67000 7.2792
1.0973 67100 7.2603
1.0990 67200 7.1715
1.1006 67300 7.2222
1.1022 67400 7.2713
1.1039 67500 7.3203
1.1055 67600 7.2419
1.1071 67700 7.3449
1.1088 67800 7.3536
1.1104 67900 7.2384
1.1120 68000 7.311
1.1137 68100 7.2888
1.1153 68200 7.1715
1.1169 68300 7.2935
1.1186 68400 7.3365
1.1202 68500 7.327
1.1218 68600 7.175
1.1235 68700 7.2658
1.1251 68800 7.2048
1.1268 68900 7.304
1.1284 69000 7.2298
1.1300 69100 7.2357
1.1317 69200 7.2441
1.1333 69300 7.2333
1.1349 69400 7.2207
1.1366 69500 7.3227
1.1382 69600 7.2532
1.1398 69700 7.2096
1.1415 69800 7.2943
1.1431 69900 7.2858
1.1447 70000 7.2294
1.1464 70100 7.2744
1.1480 70200 7.2431
1.1497 70300 7.2513
1.1513 70400 7.291
1.1529 70500 7.2074
1.1546 70600 7.2191
1.1562 70700 7.2685
1.1578 70800 7.2441
1.1595 70900 7.4062
1.1611 71000 7.1991
1.1627 71100 7.2128
1.1644 71200 7.3431
1.1660 71300 7.3997
1.1676 71400 7.2139
1.1693 71500 7.2408
1.1709 71600 7.2873
1.1725 71700 7.2057
1.1742 71800 7.1855
1.1758 71900 7.2633
1.1775 72000 7.3066
1.1791 72100 7.3253
1.1807 72200 7.2647
1.1824 72300 7.181
1.1840 72400 7.2918
1.1856 72500 7.2447
1.1873 72600 7.2283
1.1889 72700 7.2672
1.1905 72800 7.2748
1.1922 72900 7.2319
1.1938 73000 7.2038
1.1954 73100 7.2999
1.1971 73200 7.3346
1.1987 73300 7.2448
1.2003 73400 7.2399
1.2020 73500 7.277
1.2036 73600 7.2367
1.2053 73700 7.2246
1.2069 73800 7.2548
1.2085 73900 7.3035
1.2102 74000 7.2042
1.2118 74100 7.198
1.2134 74200 7.2431
1.2151 74300 7.2699
1.2167 74400 7.3081
1.2183 74500 7.3925
1.2200 74600 7.2347
1.2216 74700 7.4031
1.2232 74800 7.2845
1.2249 74900 7.2402
1.2265 75000 7.2312
1.2281 75100 7.2786
1.2298 75200 7.2651
1.2314 75300 7.2238
1.2331 75400 7.2677
1.2347 75500 7.358
1.2363 75600 7.1785
1.2380 75700 7.2661
1.2396 75800 7.2905
1.2412 75900 7.3464
1.2429 76000 7.1859
1.2445 76100 7.2172
1.2461 76200 7.2781
1.2478 76300 7.2722
1.2494 76400 7.1868
1.2510 76500 7.1762
1.2527 76600 7.1755
1.2543 76700 7.2375
1.2559 76800 7.2447
1.2576 76900 7.1957
1.2592 77000 7.2081
1.2609 77100 7.3489
1.2625 77200 7.2171
1.2641 77300 7.2283
1.2658 77400 7.2665
1.2674 77500 7.2027
1.2690 77600 7.2112
1.2707 77700 7.3322
1.2723 77800 7.1551
1.2739 77900 7.312
1.2756 78000 7.2082
1.2772 78100 7.203
1.2788 78200 7.1676
1.2805 78300 7.1858
1.2821 78400 7.2436
1.2837 78500 7.2016
1.2854 78600 7.2311
1.2870 78700 7.1834
1.2887 78800 7.2474
1.2903 78900 7.3177
1.2919 79000 7.3093
1.2936 79100 7.2566
1.2952 79200 7.1785
1.2968 79300 7.2344
1.2985 79400 7.2815
1.3001 79500 7.1929
1.3017 79600 7.2579
1.3034 79700 7.2056
1.3050 79800 7.3351
1.3066 79900 7.1994
1.3083 80000 7.2705
1.3099 80100 7.3139
1.3116 80200 7.2614
1.3132 80300 7.1795
1.3148 80400 7.3145
1.3165 80500 7.3024
1.3181 80600 7.2076
1.3197 80700 7.2667
1.3214 80800 7.203
1.3230 80900 7.2894
1.3246 81000 7.2426
1.3263 81100 7.3295
1.3279 81200 7.1609
1.3295 81300 7.3292
1.3312 81400 7.2047
1.3328 81500 7.2645
1.3344 81600 7.2628
1.3361 81700 7.363
1.3377 81800 7.2298
1.3394 81900 7.1835
1.3410 82000 7.2034
1.3426 82100 7.2825
1.3443 82200 7.2385
1.3459 82300 7.3717
1.3475 82400 7.2601
1.3492 82500 7.14
1.3508 82600 7.1989
1.3524 82700 7.3454
1.3541 82800 7.2326
1.3557 82900 7.1448
1.3573 83000 7.3331
1.3590 83100 7.3108
1.3606 83200 7.1545
1.3622 83300 7.2615
1.3639 83400 7.2073
1.3655 83500 7.2805
1.3672 83600 7.1949
1.3688 83700 7.3958
1.3704 83800 7.3567
1.3721 83900 7.2097
1.3737 84000 7.3873
1.3753 84100 7.2167
1.3770 84200 7.1561
1.3786 84300 7.2695
1.3802 84400 7.2659
1.3819 84500 7.1914
1.3835 84600 7.3513
1.3851 84700 7.2083
1.3868 84800 7.1815
1.3884 84900 7.1791
1.3900 85000 7.2966
1.3917 85100 7.1682
1.3933 85200 7.163
1.3950 85300 7.2384
1.3966 85400 7.2641
1.3982 85500 7.2897
1.3999 85600 7.2003
1.4015 85700 7.1445
1.4031 85800 7.2939
1.4048 85900 7.2109
1.4064 86000 7.3391
1.4080 86100 7.2455
1.4097 86200 7.3384
1.4113 86300 7.2789
1.4129 86400 7.2253
1.4146 86500 7.2045
1.4162 86600 7.2715
1.4178 86700 7.1557
1.4195 86800 7.2064
1.4211 86900 7.2233
1.4228 87000 7.1618
1.4244 87100 7.259
1.4260 87200 7.1844
1.4277 87300 7.2255
1.4293 87400 7.2212
1.4309 87500 7.2605
1.4326 87600 7.287
1.4342 87700 7.2306
1.4358 87800 7.1867
1.4375 87900 7.163
1.4391 88000 7.2034
1.4407 88100 7.25
1.4424 88200 7.2781
1.4440 88300 7.1707
1.4456 88400 7.2171
1.4473 88500 7.2225
1.4489 88600 7.2039
1.4506 88700 7.2183
1.4522 88800 7.3452
1.4538 88900 7.2731
1.4555 89000 7.2704
1.4571 89100 7.2491
1.4587 89200 7.1967
1.4604 89300 7.1273
1.4620 89400 7.3229
1.4636 89500 7.1202
1.4653 89600 7.2365
1.4669 89700 7.1436
1.4685 89800 7.117
1.4702 89900 7.1736
1.4718 90000 7.2387
1.4735 90100 7.2144
1.4751 90200 7.1819
1.4767 90300 7.355
1.4784 90400 7.2249
1.4800 90500 7.2295
1.4816 90600 7.3626
1.4833 90700 7.2701
1.4849 90800 7.2152
1.4865 90900 7.2432
1.4882 91000 7.166
1.4898 91100 7.144
1.4914 91200 7.2671
1.4931 91300 7.189
1.4947 91400 7.2628
1.4963 91500 7.258
1.4980 91600 7.191
1.4996 91700 7.2458
1.5013 91800 7.2966
1.5029 91900 7.1938
1.5045 92000 7.1933
1.5062 92100 7.1925
1.5078 92200 7.2848
1.5094 92300 7.191
1.5111 92400 7.2225
1.5127 92500 7.2102
1.5143 92600 7.1933
1.5160 92700 7.0943
1.5176 92800 7.2869
1.5192 92900 7.263
1.5209 93000 7.1362
1.5225 93100 7.2756
1.5241 93200 7.315
1.5258 93300 7.2681
1.5274 93400 7.2584
1.5291 93500 7.1334
1.5307 93600 7.1853
1.5323 93700 7.0984
1.5340 93800 7.2932
1.5356 93900 7.1664
1.5372 94000 7.2162
1.5389 94100 7.2584
1.5405 94200 7.2293
1.5421 94300 7.212
1.5438 94400 7.1278
1.5454 94500 7.2018
1.5470 94600 7.1641
1.5487 94700 7.2488
1.5503 94800 7.2033
1.5519 94900 7.2038
1.5536 95000 7.3503
1.5552 95100 7.231
1.5569 95200 7.2417
1.5585 95300 7.3997
1.5601 95400 7.195
1.5618 95500 7.2201
1.5634 95600 7.2433
1.5650 95700 7.3198
1.5667 95800 7.2291
1.5683 95900 7.257
1.5699 96000 7.2843
1.5716 96100 7.1688
1.5732 96200 7.2803
1.5748 96300 7.2952
1.5765 96400 7.1823
1.5781 96500 7.2153
1.5797 96600 7.28
1.5814 96700 7.3577
1.5830 96800 7.1236
1.5847 96900 7.1463
1.5863 97000 7.1706
1.5879 97100 7.128
1.5896 97200 7.2604
1.5912 97300 7.1904
1.5928 97400 7.1805
1.5945 97500 7.2696
1.5961 97600 7.2077
1.5977 97700 7.1146
1.5994 97800 7.1935
1.6010 97900 7.2175
1.6026 98000 7.1328
1.6043 98100 7.1975
1.6059 98200 7.214
1.6075 98300 7.209
1.6092 98400 7.3163
1.6108 98500 7.2076
1.6125 98600 7.2207
1.6141 98700 7.2498
1.6157 98800 7.1402
1.6174 98900 7.1557
1.6190 99000 7.2513
1.6206 99100 7.1799
1.6223 99200 7.1575
1.6239 99300 7.2611
1.6255 99400 7.2935
1.6272 99500 7.2455
1.6288 99600 7.2989
1.6304 99700 7.1742
1.6321 99800 7.2553
1.6337 99900 7.198
1.6353 100000 7.2551
1.6370 100100 7.2795
1.6386 100200 7.1472
1.6403 100300 7.2149
1.6419 100400 7.2685
1.6435 100500 7.2504
1.6452 100600 7.205
1.6468 100700 7.1591
1.6484 100800 7.2839
1.6501 100900 7.257
1.6517 101000 7.2206
1.6533 101100 7.1539
1.6550 101200 7.1568
1.6566 101300 7.2602
1.6582 101400 7.3935
1.6599 101500 7.1626
1.6615 101600 7.1664
1.6632 101700 7.1269
1.6648 101800 7.2743
1.6664 101900 7.1909
1.6681 102000 7.1663
1.6697 102100 7.1403
1.6713 102200 7.2911
1.6730 102300 7.1812
1.6746 102400 7.2591
1.6762 102500 7.1834
1.6779 102600 7.3092
1.6795 102700 7.1196
1.6811 102800 7.2028
1.6828 102900 7.263
1.6844 103000 7.1883
1.6860 103100 7.2059
1.6877 103200 7.1645
1.6893 103300 7.2974
1.6910 103400 7.2004
1.6926 103500 7.2515
1.6942 103600 7.2385
1.6959 103700 7.2995
1.6975 103800 7.3026
1.6991 103900 7.192
1.7008 104000 7.2307
1.7024 104100 7.3336
1.7040 104200 7.2262
1.7057 104300 7.2228
1.7073 104400 7.1587
1.7089 104500 7.2922
1.7106 104600 7.1341
1.7122 104700 7.1274
1.7138 104800 7.0825
1.7155 104900 7.143
1.7171 105000 7.1935
1.7188 105100 7.1841
1.7204 105200 7.1301
1.7220 105300 7.2685
1.7237 105400 7.1137
1.7253 105500 7.1538
1.7269 105600 7.211
1.7286 105700 7.2827
1.7302 105800 7.2475
1.7318 105900 7.2251
1.7335 106000 7.1754
1.7351 106100 7.2269
1.7367 106200 7.2586
1.7384 106300 7.1901
1.7400 106400 7.3009
1.7416 106500 7.245
1.7433 106600 7.2958
1.7449 106700 7.251
1.7466 106800 7.2217
1.7482 106900 7.2433
1.7498 107000 7.2166
1.7515 107100 7.2322
1.7531 107200 7.2559
1.7547 107300 7.1228
1.7564 107400 7.1692
1.7580 107500 7.1959
1.7596 107600 7.2923
1.7613 107700 7.2951
1.7629 107800 7.3977
1.7645 107900 7.1821
1.7662 108000 7.2629
1.7678 108100 7.1958
1.7694 108200 7.0956
1.7711 108300 7.279
1.7727 108400 7.1452
1.7744 108500 7.2905
1.7760 108600 7.1713
1.7776 108700 7.1666
1.7793 108800 7.2494
1.7809 108900 7.243
1.7825 109000 7.2904
1.7842 109100 7.2237
1.7858 109200 7.2001
1.7874 109300 7.2414
1.7891 109400 7.2922
1.7907 109500 7.2264
1.7923 109600 7.1515
1.7940 109700 7.1905
1.7956 109800 7.1717
1.7972 109900 7.2072
1.7989 110000 7.1213
1.8005 110100 7.2218
1.8022 110200 7.1974
1.8038 110300 7.0928
1.8054 110400 7.1477
1.8071 110500 7.1406
1.8087 110600 7.2329
1.8103 110700 7.1725
1.8120 110800 7.2708
1.8136 110900 7.2481
1.8152 111000 7.1359
1.8169 111100 7.2038
1.8185 111200 7.2292
1.8201 111300 7.2504
1.8218 111400 7.2571
1.8234 111500 7.1655
1.8251 111600 7.3047
1.8267 111700 7.142
1.8283 111800 7.2475
1.8300 111900 7.2443
1.8316 112000 7.2015
1.8332 112100 7.1179
1.8349 112200 7.123
1.8365 112300 7.3373
1.8381 112400 7.1966
1.8398 112500 7.2326
1.8414 112600 7.1472
1.8430 112700 7.1406
1.8447 112800 7.313
1.8463 112900 7.2112
1.8479 113000 7.2402
1.8496 113100 7.2575
1.8512 113200 7.1365
1.8529 113300 7.1803
1.8545 113400 7.2568
1.8561 113500 7.3168
1.8578 113600 7.1657
1.8594 113700 7.2552
1.8610 113800 7.1183
1.8627 113900 7.1829
1.8643 114000 7.2194
1.8659 114100 7.2145
1.8676 114200 7.1671
1.8692 114300 7.1594
1.8708 114400 7.0844
1.8725 114500 7.1534
1.8741 114600 7.1934
1.8757 114700 7.1685
1.8774 114800 7.2746
1.8790 114900 7.1504
1.8807 115000 7.1447
1.8823 115100 7.1682
1.8839 115200 7.2072
1.8856 115300 7.098
1.8872 115400 7.1204
1.8888 115500 7.0923
1.8905 115600 7.183
1.8921 115700 7.1502
1.8937 115800 7.369
1.8954 115900 7.314
1.8970 116000 7.1633
1.8986 116100 7.1789
1.9003 116200 7.1506
1.9019 116300 7.1516
1.9035 116400 7.2381
1.9052 116500 7.147
1.9068 116600 7.184
1.9085 116700 7.2773
1.9101 116800 7.1546
1.9117 116900 7.1855
1.9134 117000 7.2159
1.9150 117100 7.2668
1.9166 117200 7.2658
1.9183 117300 7.2767
1.9199 117400 7.101
1.9215 117500 7.2031
1.9232 117600 7.2688
1.9248 117700 7.1934
1.9264 117800 7.1508
1.9281 117900 7.1479
1.9297 118000 7.3306
1.9313 118100 7.2065
1.9330 118200 7.1814
1.9346 118300 7.1969
1.9363 118400 7.1315
1.9379 118500 7.2007
1.9395 118600 7.2288
1.9412 118700 7.191
1.9428 118800 7.2268
1.9444 118900 7.1451
1.9461 119000 7.1345
1.9477 119100 7.2011
1.9493 119200 7.1849
1.9510 119300 7.2218
1.9526 119400 7.1971
1.9542 119500 7.3396
1.9559 119600 7.2104
1.9575 119700 7.2039
1.9591 119800 7.2464
1.9608 119900 7.3043
1.9624 120000 7.4122
1.9641 120100 7.1111
1.9657 120200 7.2129
1.9673 120300 7.1588
1.9690 120400 7.1101
1.9706 120500 7.352
1.9722 120600 7.1776
1.9739 120700 7.2707
1.9755 120800 7.1185
1.9771 120900 7.1938
1.9788 121000 7.2589
1.9804 121100 7.2122
1.9820 121200 7.2125
1.9837 121300 7.095
1.9853 121400 7.1098
1.9869 121500 7.2205
1.9886 121600 7.1645
1.9902 121700 7.3004
1.9919 121800 7.2379
1.9935 121900 7.1142
1.9951 122000 7.2685
1.9968 122100 7.214
1.9984 122200 7.1726

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
2
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for youssefkhalil320/all-MiniLM-L6-v16-pair_score

Finetuned
(451)
this model