all-MiniLM-L6-v17-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'electronic instrument',
'sirlion',
'Salad',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0122 | 100 | 10.562 |
0.0244 | 200 | 10.0184 |
0.0366 | 300 | 9.398 |
0.0488 | 400 | 8.8197 |
0.0610 | 500 | 8.3899 |
0.0733 | 600 | 7.8989 |
0.0855 | 700 | 7.6515 |
0.0977 | 800 | 7.3998 |
0.1099 | 900 | 7.166 |
0.1221 | 1000 | 6.9383 |
0.1343 | 1100 | 6.6043 |
0.1465 | 1200 | 6.3584 |
0.1587 | 1300 | 6.0252 |
0.1709 | 1400 | 5.7639 |
0.1831 | 1500 | 5.6496 |
0.1953 | 1600 | 5.2169 |
0.2075 | 1700 | 5.1389 |
0.2198 | 1800 | 4.9316 |
0.2320 | 1900 | 4.8547 |
0.2442 | 2000 | 4.6022 |
0.2564 | 2100 | 4.7122 |
0.2686 | 2200 | 4.5965 |
0.2808 | 2300 | 3.9285 |
0.2930 | 2400 | 4.0168 |
0.3052 | 2500 | 4.2677 |
0.3174 | 2600 | 4.147 |
0.3296 | 2700 | 4.101 |
0.3418 | 2800 | 3.8629 |
0.3540 | 2900 | 3.86 |
0.3663 | 3000 | 3.5607 |
0.3785 | 3100 | 3.8495 |
0.3907 | 3200 | 3.5558 |
0.4029 | 3300 | 3.7251 |
0.4151 | 3400 | 3.5233 |
0.4273 | 3500 | 3.8677 |
0.4395 | 3600 | 3.3688 |
0.4517 | 3700 | 3.479 |
0.4639 | 3800 | 3.1691 |
0.4761 | 3900 | 3.1791 |
0.4883 | 4000 | 3.2925 |
0.5005 | 4100 | 2.6573 |
0.5128 | 4200 | 2.8804 |
0.5250 | 4300 | 3.0418 |
0.5372 | 4400 | 2.7162 |
0.5494 | 4500 | 2.8449 |
0.5616 | 4600 | 2.7159 |
0.5738 | 4700 | 2.5733 |
0.5860 | 4800 | 2.5866 |
0.5982 | 4900 | 2.9195 |
0.6104 | 5000 | 2.0384 |
0.6226 | 5100 | 2.6745 |
0.6348 | 5200 | 2.3901 |
0.6471 | 5300 | 2.2872 |
0.6593 | 5400 | 2.0086 |
0.6715 | 5500 | 2.198 |
0.6837 | 5600 | 1.9139 |
0.6959 | 5700 | 2.0432 |
0.7081 | 5800 | 2.1445 |
0.7203 | 5900 | 2.5626 |
0.7325 | 6000 | 2.1707 |
0.7447 | 6100 | 2.1568 |
0.7569 | 6200 | 2.0102 |
0.7691 | 6300 | 2.0012 |
0.7813 | 6400 | 1.8381 |
0.7936 | 6500 | 1.7552 |
0.8058 | 6600 | 1.9704 |
0.8180 | 6700 | 1.6397 |
0.8302 | 6800 | 1.8857 |
0.8424 | 6900 | 1.8036 |
0.8546 | 7000 | 1.721 |
0.8668 | 7100 | 1.6888 |
0.8790 | 7200 | 1.7908 |
0.8912 | 7300 | 1.5851 |
0.9034 | 7400 | 1.7986 |
0.9156 | 7500 | 1.2549 |
0.9278 | 7600 | 1.5765 |
0.9401 | 7700 | 1.4524 |
0.9523 | 7800 | 1.2767 |
0.9645 | 7900 | 1.1604 |
0.9767 | 8000 | 1.557 |
0.9889 | 8100 | 1.1124 |
1.0011 | 8200 | 1.3092 |
1.0133 | 8300 | 1.598 |
1.0255 | 8400 | 1.6242 |
1.0377 | 8500 | 1.4893 |
1.0499 | 8600 | 1.0693 |
1.0621 | 8700 | 0.9369 |
1.0743 | 8800 | 1.1275 |
1.0866 | 8900 | 1.3307 |
1.0988 | 9000 | 1.0498 |
1.1110 | 9100 | 1.2496 |
1.1232 | 9200 | 1.1011 |
1.1354 | 9300 | 1.0483 |
1.1476 | 9400 | 1.2593 |
1.1598 | 9500 | 0.9409 |
1.1720 | 9600 | 1.0609 |
1.1842 | 9700 | 1.1829 |
1.1964 | 9800 | 1.0511 |
1.2086 | 9900 | 0.919 |
1.2209 | 10000 | 0.9473 |
1.2331 | 10100 | 1.2604 |
1.2453 | 10200 | 1.17 |
1.2575 | 10300 | 1.181 |
1.2697 | 10400 | 0.9092 |
1.2819 | 10500 | 0.9655 |
1.2941 | 10600 | 1.058 |
1.3063 | 10700 | 1.283 |
1.3185 | 10800 | 1.1552 |
1.3307 | 10900 | 0.858 |
1.3429 | 11000 | 0.8581 |
1.3551 | 11100 | 1.1272 |
1.3674 | 11200 | 1.0127 |
1.3796 | 11300 | 0.7372 |
1.3918 | 11400 | 0.913 |
1.4040 | 11500 | 0.8728 |
1.4162 | 11600 | 1.1358 |
1.4284 | 11700 | 0.9387 |
1.4406 | 11800 | 0.8424 |
1.4528 | 11900 | 0.8999 |
1.4650 | 12000 | 1.2505 |
1.4772 | 12100 | 1.0151 |
1.4894 | 12200 | 0.8013 |
1.5016 | 12300 | 1.1422 |
1.5139 | 12400 | 1.1518 |
1.5261 | 12500 | 1.0553 |
1.5383 | 12600 | 0.9228 |
1.5505 | 12700 | 1.2036 |
1.5627 | 12800 | 1.1064 |
1.5749 | 12900 | 0.7599 |
1.5871 | 13000 | 0.6376 |
1.5993 | 13100 | 1.002 |
1.6115 | 13200 | 0.9072 |
1.6237 | 13300 | 0.9645 |
1.6359 | 13400 | 0.9208 |
1.6482 | 13500 | 1.1439 |
1.6604 | 13600 | 1.3721 |
1.6726 | 13700 | 0.8702 |
1.6848 | 13800 | 0.9476 |
1.6970 | 13900 | 1.1247 |
1.7092 | 14000 | 1.1059 |
1.7214 | 14100 | 0.9272 |
1.7336 | 14200 | 0.8893 |
1.7458 | 14300 | 0.6242 |
1.7580 | 14400 | 0.6779 |
1.7702 | 14500 | 0.7436 |
1.7824 | 14600 | 0.7655 |
1.7947 | 14700 | 0.7952 |
1.8069 | 14800 | 1.1916 |
1.8191 | 14900 | 0.7219 |
1.8313 | 15000 | 0.7313 |
1.8435 | 15100 | 0.8224 |
1.8557 | 15200 | 0.8756 |
1.8679 | 15300 | 0.622 |
1.8801 | 15400 | 1.0309 |
1.8923 | 15500 | 0.7322 |
1.9045 | 15600 | 0.9327 |
1.9167 | 15700 | 0.8632 |
1.9289 | 15800 | 1.0087 |
1.9412 | 15900 | 0.6738 |
1.9534 | 16000 | 0.8936 |
1.9656 | 16100 | 0.8083 |
1.9778 | 16200 | 0.7114 |
1.9900 | 16300 | 0.9119 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for youssefkhalil320/all-MiniLM-L6-v17-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2