all-MiniLM-L6-v22-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'olive bread',
    'vienna bread sandwich',
    'artificial backpack',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0.0014 100 13.3151
0.0028 200 13.1873
0.0042 300 13.0872
0.0055 400 12.5974
0.0069 500 12.408
0.0083 600 11.7977
0.0097 700 11.2667
0.0111 800 10.8029
0.0125 900 10.5023
0.0139 1000 10.0156
0.0152 1100 9.7791
0.0166 1200 9.5276
0.0180 1300 9.3284
0.0194 1400 9.0922
0.0208 1500 8.9114
0.0222 1600 8.7465
0.0235 1700 8.6648
0.0249 1800 8.5861
0.0263 1900 8.5573
0.0277 2000 8.5427
0.0291 2100 8.5002
0.0305 2200 8.4636
0.0319 2300 8.4346
0.0332 2400 8.4229
0.0346 2500 8.4147
0.0360 2600 8.3791
0.0374 2700 8.3548
0.0388 2800 8.3519
0.0402 2900 8.3354
0.0416 3000 8.317
0.0429 3100 8.3136
0.0443 3200 8.3028
0.0457 3300 8.2931
0.0471 3400 8.2671
0.0485 3500 8.2724
0.0499 3600 8.2473
0.0513 3700 8.2436
0.0526 3800 8.2243
0.0540 3900 8.2253
0.0554 4000 8.1861
0.0568 4100 8.1813
0.0582 4200 8.1872
0.0596 4300 8.1658
0.0609 4400 8.1425
0.0623 4500 8.1468
0.0637 4600 8.1429
0.0651 4700 8.1495
0.0665 4800 8.1241
0.0679 4900 8.1207
0.0693 5000 8.1106
0.0706 5100 8.0974
0.0720 5200 8.1179
0.0734 5300 8.0716
0.0748 5400 8.0839
0.0762 5500 8.0711
0.0776 5600 8.0756
0.0790 5700 8.0773
0.0803 5800 8.0348
0.0817 5900 8.0509
0.0831 6000 8.047
0.0845 6100 8.0284
0.0859 6200 8.0309
0.0873 6300 8.0151
0.0886 6400 8.0307
0.0900 6500 7.9861
0.0914 6600 7.998
0.0928 6700 7.9919
0.0942 6800 7.9795
0.0956 6900 7.9799
0.0970 7000 7.9707
0.0983 7100 7.9808
0.0997 7200 7.9403
0.1011 7300 7.9484
0.1025 7400 7.9546
0.1039 7500 7.9224
0.1053 7600 7.9411
0.1067 7700 7.9346
0.1080 7800 7.9214
0.1094 7900 7.9129
0.1108 8000 7.9079
0.1122 8100 7.9072
0.1136 8200 7.906
0.1150 8300 7.9161
0.1164 8400 7.8859
0.1177 8500 7.9085
0.1191 8600 7.8815
0.1205 8700 7.8831
0.1219 8800 7.8863
0.1233 8900 7.8891
0.1247 9000 7.8795
0.1260 9100 7.8582
0.1274 9200 7.8725
0.1288 9300 7.8682
0.1302 9400 7.8559
0.1316 9500 7.8643
0.1330 9600 7.8253
0.1344 9700 7.8536
0.1357 9800 7.8503
0.1371 9900 7.8332
0.1385 10000 7.8552
0.1399 10100 7.8111
0.1413 10200 7.8251
0.1427 10300 7.8288
0.1441 10400 7.8245
0.1454 10500 7.8506
0.1468 10600 7.8356
0.1482 10700 7.8137
0.1496 10800 7.8331
0.1510 10900 7.8033
0.1524 11000 7.8223
0.1538 11100 7.7811
0.1551 11200 7.793
0.1565 11300 7.7813
0.1579 11400 7.7905
0.1593 11500 7.792
0.1607 11600 7.7981
0.1621 11700 7.7692
0.1634 11800 7.7802
0.1648 11900 7.7919
0.1662 12000 7.7858
0.1676 12100 7.7763
0.1690 12200 7.7759
0.1704 12300 7.7556
0.1718 12400 7.7548
0.1731 12500 7.7302
0.1745 12600 7.7127
0.1759 12700 7.7606
0.1773 12800 7.7816
0.1787 12900 7.7647
0.1801 13000 7.742
0.1815 13100 7.743
0.1828 13200 7.7233
0.1842 13300 7.7638
0.1856 13400 7.7349
0.1870 13500 7.7431
0.1884 13600 7.7041
0.1898 13700 7.7402
0.1911 13800 7.7102
0.1925 13900 7.7378
0.1939 14000 7.7406
0.1953 14100 7.6961
0.1967 14200 7.7537
0.1981 14300 7.734
0.1995 14400 7.7077
0.2008 14500 7.7491
0.2022 14600 7.7278
0.2036 14700 7.686
0.2050 14800 7.6983
0.2064 14900 7.6826
0.2078 15000 7.6852
0.2092 15100 7.673
0.2105 15200 7.7436
0.2119 15300 7.6978
0.2133 15400 7.681
0.2147 15500 7.7121
0.2161 15600 7.6951
0.2175 15700 7.6471
0.2189 15800 7.7127
0.2202 15900 7.6833
0.2216 16000 7.6567
0.2230 16100 7.6599
0.2244 16200 7.673
0.2258 16300 7.635
0.2272 16400 7.6492
0.2285 16500 7.6817
0.2299 16600 7.6479
0.2313 16700 7.6552
0.2327 16800 7.666
0.2341 16900 7.6306
0.2355 17000 7.6693
0.2369 17100 7.6453
0.2382 17200 7.6176
0.2396 17300 7.6842
0.2410 17400 7.6577
0.2424 17500 7.6503
0.2438 17600 7.6488
0.2452 17700 7.7083
0.2466 17800 7.5939
0.2479 17900 7.6462
0.2493 18000 7.6295
0.2507 18100 7.5845
0.2521 18200 7.6463
0.2535 18300 7.6159
0.2549 18400 7.6669
0.2563 18500 7.6195
0.2576 18600 7.6298
0.2590 18700 7.6489
0.2604 18800 7.6434
0.2618 18900 7.6258
0.2632 19000 7.618
0.2646 19100 7.6135
0.2659 19200 7.6062
0.2673 19300 7.6451
0.2687 19400 7.6254
0.2701 19500 7.5803
0.2715 19600 7.6137
0.2729 19700 7.5911
0.2743 19800 7.6171
0.2756 19900 7.6125
0.2770 20000 7.5853
0.2784 20100 7.5971
0.2798 20200 7.5777
0.2812 20300 7.6144
0.2826 20400 7.6101
0.2840 20500 7.5944
0.2853 20600 7.6156
0.2867 20700 7.5975
0.2881 20800 7.5452
0.2895 20900 7.6003
0.2909 21000 7.5669
0.2923 21100 7.5692
0.2936 21200 7.6091
0.2950 21300 7.5639
0.2964 21400 7.5984
0.2978 21500 7.6022
0.2992 21600 7.6141
0.3006 21700 7.5446
0.3020 21800 7.6149
0.3033 21900 7.5732
0.3047 22000 7.5974
0.3061 22100 7.569
0.3075 22200 7.5684
0.3089 22300 7.6374
0.3103 22400 7.5672
0.3117 22500 7.5173
0.3130 22600 7.5573
0.3144 22700 7.6042
0.3158 22800 7.5955
0.3172 22900 7.5782
0.3186 23000 7.594
0.3200 23100 7.5951
0.3214 23200 7.605
0.3227 23300 7.5453
0.3241 23400 7.5629
0.3255 23500 7.5595
0.3269 23600 7.5933
0.3283 23700 7.5834
0.3297 23800 7.56
0.3310 23900 7.6024
0.3324 24000 7.5253
0.3338 24100 7.6095
0.3352 24200 7.5373
0.3366 24300 7.5452
0.3380 24400 7.5744
0.3394 24500 7.5106
0.3407 24600 7.5784
0.3421 24700 7.5274
0.3435 24800 7.559
0.3449 24900 7.5584
0.3463 25000 7.5699
0.3477 25100 7.5041
0.3491 25200 7.5642
0.3504 25300 7.5568
0.3518 25400 7.5886
0.3532 25500 7.494
0.3546 25600 7.5222
0.3560 25700 7.4865
0.3574 25800 7.5633
0.3588 25900 7.553
0.3601 26000 7.6704
0.3615 26100 7.5267
0.3629 26200 7.5408
0.3643 26300 7.4991
0.3657 26400 7.549
0.3671 26500 7.4777
0.3684 26600 7.4855
0.3698 26700 7.4947
0.3712 26800 7.5415
0.3726 26900 7.5321
0.3740 27000 7.4825
0.3754 27100 7.4917
0.3768 27200 7.5398
0.3781 27300 7.5259
0.3795 27400 7.522
0.3809 27500 7.5133
0.3823 27600 7.5326
0.3837 27700 7.4505
0.3851 27800 7.516
0.3865 27900 7.5894
0.3878 28000 7.5531
0.3892 28100 7.5203
0.3906 28200 7.5506
0.3920 28300 7.5123
0.3934 28400 7.5005
0.3948 28500 7.4872
0.3961 28600 7.4791
0.3975 28700 7.4358
0.3989 28800 7.4826
0.4003 28900 7.5188
0.4017 29000 7.5248
0.4031 29100 7.4992
0.4045 29200 7.4996
0.4058 29300 7.5025
0.4072 29400 7.4872
0.4086 29500 7.5407
0.4100 29600 7.5168
0.4114 29700 7.5522
0.4128 29800 7.5019
0.4142 29900 7.515
0.4155 30000 7.451
0.4169 30100 7.5018
0.4183 30200 7.5021
0.4197 30300 7.4497
0.4211 30400 7.5174
0.4225 30500 7.5061
0.4239 30600 7.5063
0.4252 30700 7.4805
0.4266 30800 7.468
0.4280 30900 7.4766
0.4294 31000 7.4685
0.4308 31100 7.4987
0.4322 31200 7.5022
0.4335 31300 7.4695
0.4349 31400 7.4963
0.4363 31500 7.5069
0.4377 31600 7.53
0.4391 31700 7.5349
0.4405 31800 7.4814
0.4419 31900 7.5264
0.4432 32000 7.492
0.4446 32100 7.5181
0.4460 32200 7.4941
0.4474 32300 7.4643
0.4488 32400 7.4871
0.4502 32500 7.5472
0.4516 32600 7.4661
0.4529 32700 7.4824
0.4543 32800 7.4788
0.4557 32900 7.4426
0.4571 33000 7.4535
0.4585 33100 7.4577
0.4599 33200 7.5013
0.4613 33300 7.4605
0.4626 33400 7.4774
0.4640 33500 7.4955
0.4654 33600 7.4773
0.4668 33700 7.472
0.4682 33800 7.4267
0.4696 33900 7.5577
0.4709 34000 7.4729
0.4723 34100 7.4629
0.4737 34200 7.5506
0.4751 34300 7.4589
0.4765 34400 7.4575
0.4779 34500 7.4439
0.4793 34600 7.431
0.4806 34700 7.4778
0.4820 34800 7.5497
0.4834 34900 7.4899
0.4848 35000 7.4708
0.4862 35100 7.5337
0.4876 35200 7.4959
0.4890 35300 7.5015
0.4903 35400 7.498
0.4917 35500 7.4493
0.4931 35600 7.4628
0.4945 35700 7.444
0.4959 35800 7.4649
0.4973 35900 7.4356
0.4986 36000 7.3971
0.5000 36100 7.4905
0.5014 36200 7.4269
0.5028 36300 7.5351
0.5042 36400 7.4145
0.5056 36500 7.4401
0.5070 36600 7.4551
0.5083 36700 7.4893
0.5097 36800 7.4274
0.5111 36900 7.4876
0.5125 37000 7.5283
0.5139 37100 7.4202
0.5153 37200 7.4549
0.5167 37300 7.4509
0.5180 37400 7.4617
0.5194 37500 7.4563
0.5208 37600 7.4144
0.5222 37700 7.3682
0.5236 37800 7.5339
0.5250 37900 7.5173
0.5264 38000 7.4899
0.5277 38100 7.436
0.5291 38200 7.4944
0.5305 38300 7.4167
0.5319 38400 7.4422
0.5333 38500 7.4331
0.5347 38600 7.4653
0.5360 38700 7.4122
0.5374 38800 7.4114
0.5388 38900 7.5259
0.5402 39000 7.3827
0.5416 39100 7.5713
0.5430 39200 7.4495
0.5444 39300 7.4369
0.5457 39400 7.4692
0.5471 39500 7.4395
0.5485 39600 7.4485
0.5499 39700 7.5105
0.5513 39800 7.4444
0.5527 39900 7.4584
0.5541 40000 7.4277
0.5554 40100 7.4578
0.5568 40200 7.4067
0.5582 40300 7.4176
0.5596 40400 7.4103
0.5610 40500 7.3602
0.5624 40600 7.5196
0.5638 40700 7.477
0.5651 40800 7.413
0.5665 40900 7.3673
0.5679 41000 7.4181
0.5693 41100 7.5112
0.5707 41200 7.3908
0.5721 41300 7.4898
0.5734 41400 7.4635
0.5748 41500 7.3869
0.5762 41600 7.4481
0.5776 41700 7.3904
0.5790 41800 7.4011
0.5804 41900 7.4899
0.5818 42000 7.4062
0.5831 42100 7.3945
0.5845 42200 7.4876
0.5859 42300 7.4495
0.5873 42400 7.4475
0.5887 42500 7.3803
0.5901 42600 7.4307
0.5915 42700 7.4273
0.5928 42800 7.4711
0.5942 42900 7.5052
0.5956 43000 7.405
0.5970 43100 7.4305
0.5984 43200 7.4532
0.5998 43300 7.38
0.6011 43400 7.4332
0.6025 43500 7.4378
0.6039 43600 7.4296
0.6053 43700 7.505
0.6067 43800 7.4267
0.6081 43900 7.4265
0.6095 44000 7.4499
0.6108 44100 7.4291
0.6122 44200 7.396
0.6136 44300 7.3805
0.6150 44400 7.4736
0.6164 44500 7.4561
0.6178 44600 7.4741
0.6192 44700 7.3896
0.6205 44800 7.3871
0.6219 44900 7.3646
0.6233 45000 7.3932
0.6247 45100 7.3707
0.6261 45200 7.414
0.6275 45300 7.3803
0.6289 45400 7.4774
0.6302 45500 7.4495
0.6316 45600 7.4396
0.6330 45700 7.4329
0.6344 45800 7.4095
0.6358 45900 7.4187
0.6372 46000 7.4168
0.6385 46100 7.3475
0.6399 46200 7.4588
0.6413 46300 7.4003
0.6427 46400 7.3922
0.6441 46500 7.3876
0.6455 46600 7.3935
0.6469 46700 7.4917
0.6482 46800 7.3707
0.6496 46900 7.3791
0.6510 47000 7.4088
0.6524 47100 7.379
0.6538 47200 7.389
0.6552 47300 7.4416
0.6566 47400 7.3802
0.6579 47500 7.4649
0.6593 47600 7.4132
0.6607 47700 7.3996
0.6621 47800 7.4503
0.6635 47900 7.4758
0.6649 48000 7.3553
0.6663 48100 7.3687
0.6676 48200 7.4157
0.6690 48300 7.4224
0.6704 48400 7.3553
0.6718 48500 7.3889
0.6732 48600 7.4233
0.6746 48700 7.3613
0.6759 48800 7.4397
0.6773 48900 7.3523
0.6787 49000 7.4391
0.6801 49100 7.433
0.6815 49200 7.3552
0.6829 49300 7.4311
0.6843 49400 7.3616
0.6856 49500 7.4397
0.6870 49600 7.3553
0.6884 49700 7.4019
0.6898 49800 7.4031
0.6912 49900 7.4042
0.6926 50000 7.3963
0.6940 50100 7.4871
0.6953 50200 7.3242
0.6967 50300 7.5154
0.6981 50400 7.3815
0.6995 50500 7.4521
0.7009 50600 7.3568
0.7023 50700 7.3721
0.7036 50800 7.3759
0.7050 50900 7.4416
0.7064 51000 7.3963
0.7078 51100 7.3423
0.7092 51200 7.3655
0.7106 51300 7.3788
0.7120 51400 7.4072
0.7133 51500 7.3637
0.7147 51600 7.4269
0.7161 51700 7.3386
0.7175 51800 7.457
0.7189 51900 7.3351
0.7203 52000 7.4092
0.7217 52100 7.4321
0.7230 52200 7.4003
0.7244 52300 7.3675
0.7258 52400 7.4438
0.7272 52500 7.3949
0.7286 52600 7.3978
0.7300 52700 7.4282
0.7314 52800 7.4232
0.7327 52900 7.361
0.7341 53000 7.3825
0.7355 53100 7.4303
0.7369 53200 7.3976
0.7383 53300 7.3676
0.7397 53400 7.3369
0.7410 53500 7.3894
0.7424 53600 7.442
0.7438 53700 7.307
0.7452 53800 7.3844
0.7466 53900 7.5372
0.7480 54000 7.3747
0.7494 54100 7.3696
0.7507 54200 7.3717
0.7521 54300 7.3966
0.7535 54400 7.3831
0.7549 54500 7.3484
0.7563 54600 7.4255
0.7577 54700 7.3865
0.7591 54800 7.4551
0.7604 54900 7.3532
0.7618 55000 7.3875
0.7632 55100 7.3747
0.7646 55200 7.3553
0.7660 55300 7.4432
0.7674 55400 7.332
0.7688 55500 7.4537
0.7701 55600 7.3334
0.7715 55700 7.4009
0.7729 55800 7.3804
0.7743 55900 7.4253
0.7757 56000 7.3272
0.7771 56100 7.3463
0.7784 56200 7.3882
0.7798 56300 7.3658
0.7812 56400 7.352
0.7826 56500 7.4125
0.7840 56600 7.4103
0.7854 56700 7.3566
0.7868 56800 7.3626
0.7881 56900 7.2854
0.7895 57000 7.3495
0.7909 57100 7.4728
0.7923 57200 7.3458
0.7937 57300 7.2908
0.7951 57400 7.386
0.7965 57500 7.3155
0.7978 57600 7.3665
0.7992 57700 7.4746
0.8006 57800 7.3719
0.8020 57900 7.3536
0.8034 58000 7.4571
0.8048 58100 7.3801
0.8062 58200 7.3573
0.8075 58300 7.4437
0.8089 58400 7.3479
0.8103 58500 7.3505
0.8117 58600 7.2955
0.8131 58700 7.3686
0.8145 58800 7.3511
0.8158 58900 7.3904
0.8172 59000 7.4004
0.8186 59100 7.3157
0.8200 59200 7.3575
0.8214 59300 7.3586
0.8228 59400 7.37
0.8242 59500 7.3625
0.8255 59600 7.3388
0.8269 59700 7.3402
0.8283 59800 7.3287
0.8297 59900 7.2855
0.8311 60000 7.425
0.8325 60100 7.3536
0.8339 60200 7.3767
0.8352 60300 7.322
0.8366 60400 7.3698
0.8380 60500 7.5389
0.8394 60600 7.326
0.8408 60700 7.343
0.8422 60800 7.3661
0.8435 60900 7.3212
0.8449 61000 7.3604
0.8463 61100 7.3119
0.8477 61200 7.4672
0.8491 61300 7.401
0.8505 61400 7.3794
0.8519 61500 7.2836
0.8532 61600 7.3387
0.8546 61700 7.374
0.8560 61800 7.3467
0.8574 61900 7.2876
0.8588 62000 7.4119
0.8602 62100 7.4382
0.8616 62200 7.3292
0.8629 62300 7.4343
0.8643 62400 7.3818
0.8657 62500 7.3652
0.8671 62600 7.4429
0.8685 62700 7.28
0.8699 62800 7.3969
0.8713 62900 7.4785
0.8726 63000 7.4157
0.8740 63100 7.3702
0.8754 63200 7.3002
0.8768 63300 7.3706
0.8782 63400 7.3406
0.8796 63500 7.3507
0.8809 63600 7.3206
0.8823 63700 7.31
0.8837 63800 7.3445
0.8851 63900 7.4435
0.8865 64000 7.3513
0.8879 64100 7.2849
0.8893 64200 7.3391
0.8906 64300 7.4255
0.8920 64400 7.3575
0.8934 64500 7.346
0.8948 64600 7.3996
0.8962 64700 7.4115
0.8976 64800 7.3815
0.8990 64900 7.3155
0.9003 65000 7.2967
0.9017 65100 7.3715
0.9031 65200 7.3568
0.9045 65300 7.2938
0.9059 65400 7.5004
0.9073 65500 7.3144
0.9087 65600 7.3667
0.9100 65700 7.3728
0.9114 65800 7.3898
0.9128 65900 7.3529
0.9142 66000 7.3405
0.9156 66100 7.4079
0.9170 66200 7.3406
0.9183 66300 7.3016
0.9197 66400 7.4485
0.9211 66500 7.3258
0.9225 66600 7.3179
0.9239 66700 7.2606
0.9253 66800 7.3218
0.9267 66900 7.283
0.9280 67000 7.4368
0.9294 67100 7.3422
0.9308 67200 7.3355
0.9322 67300 7.2838
0.9336 67400 7.3674
0.9350 67500 7.3182
0.9364 67600 7.3228
0.9377 67700 7.2481
0.9391 67800 7.321
0.9405 67900 7.3125
0.9419 68000 7.3569
0.9433 68100 7.3628
0.9447 68200 7.3832
0.9460 68300 7.399
0.9474 68400 7.2933
0.9488 68500 7.3383
0.9502 68600 7.2991
0.9516 68700 7.3543
0.9530 68800 7.2579
0.9544 68900 7.3537
0.9557 69000 7.372
0.9571 69100 7.3847
0.9585 69200 7.3026
0.9599 69300 7.3902
0.9613 69400 7.321
0.9627 69500 7.3577
0.9641 69600 7.4001
0.9654 69700 7.3899
0.9668 69800 7.4263
0.9682 69900 7.3284
0.9696 70000 7.3097
0.9710 70100 7.2962
0.9724 70200 7.3117
0.9738 70300 7.3221
0.9751 70400 7.3007
0.9765 70500 7.3126
0.9779 70600 7.3662
0.9793 70700 7.3672
0.9807 70800 7.3216
0.9821 70900 7.3639
0.9834 71000 7.4292
0.9848 71100 7.3359
0.9862 71200 7.3107
0.9876 71300 7.3748
0.9890 71400 7.4179
0.9904 71500 7.3082
0.9918 71600 7.4592
0.9931 71700 7.3289
0.9945 71800 7.3391
0.9959 71900 7.2528
0.9973 72000 7.2357
0.9987 72100 7.4074
1.0001 72200 7.3942
1.0015 72300 7.279
1.0028 72400 7.3732
1.0042 72500 7.3488
1.0056 72600 7.377
1.0070 72700 7.3629
1.0084 72800 7.3006
1.0098 72900 7.2985
1.0112 73000 7.2861
1.0125 73100 7.2878
1.0139 73200 7.3133
1.0153 73300 7.2951
1.0167 73400 7.2915
1.0181 73500 7.3442
1.0195 73600 7.419
1.0208 73700 7.318
1.0222 73800 7.3427
1.0236 73900 7.3025
1.0250 74000 7.2614
1.0264 74100 7.353
1.0278 74200 7.2902
1.0292 74300 7.3317
1.0305 74400 7.2669
1.0319 74500 7.3188
1.0333 74600 7.3258
1.0347 74700 7.2478
1.0361 74800 7.3493
1.0375 74900 7.3595
1.0389 75000 7.2817
1.0402 75100 7.2349
1.0416 75200 7.3465
1.0430 75300 7.2835
1.0444 75400 7.3794
1.0458 75500 7.2708
1.0472 75600 7.2925
1.0485 75700 7.3301
1.0499 75800 7.3068
1.0513 75900 7.3336
1.0527 76000 7.3191
1.0541 76100 7.2706
1.0555 76200 7.3201
1.0569 76300 7.3378
1.0582 76400 7.4363
1.0596 76500 7.3432
1.0610 76600 7.3049
1.0624 76700 7.3077
1.0638 76800 7.3776
1.0652 76900 7.2489
1.0666 77000 7.3204
1.0679 77100 7.3678
1.0693 77200 7.2712
1.0707 77300 7.382
1.0721 77400 7.3653
1.0735 77500 7.31
1.0749 77600 7.3158
1.0763 77700 7.3205
1.0776 77800 7.2441
1.0790 77900 7.4288
1.0804 78000 7.3267
1.0818 78100 7.2549
1.0832 78200 7.2929
1.0846 78300 7.3197
1.0859 78400 7.3341
1.0873 78500 7.3456
1.0887 78600 7.3288
1.0901 78700 7.2787
1.0915 78800 7.3384
1.0929 78900 7.2815
1.0943 79000 7.2999
1.0956 79100 7.2174
1.0970 79200 7.3654
1.0984 79300 7.2695
1.0998 79400 7.2976
1.1012 79500 7.332
1.1026 79600 7.3695
1.1040 79700 7.329
1.1053 79800 7.337
1.1067 79900 7.3192
1.1081 80000 7.3398
1.1095 80100 7.2682
1.1109 80200 7.3227
1.1123 80300 7.3412
1.1137 80400 7.2454
1.1150 80500 7.3428
1.1164 80600 7.4611
1.1178 80700 7.3538
1.1192 80800 7.2428
1.1206 80900 7.3412
1.1220 81000 7.3696
1.1233 81100 7.3742
1.1247 81200 7.2255
1.1261 81300 7.2998
1.1275 81400 7.3464
1.1289 81500 7.3287
1.1303 81600 7.3203
1.1317 81700 7.3403
1.1330 81800 7.3422
1.1344 81900 7.2496
1.1358 82000 7.3012
1.1372 82100 7.3161
1.1386 82200 7.343
1.1400 82300 7.368
1.1414 82400 7.3123
1.1427 82500 7.3865
1.1441 82600 7.3701
1.1455 82700 7.2246
1.1469 82800 7.3181
1.1483 82900 7.3063
1.1497 83000 7.3376
1.1510 83100 7.3541
1.1524 83200 7.2598
1.1538 83300 7.3151
1.1552 83400 7.3306
1.1566 83500 7.4085
1.1580 83600 7.2223
1.1594 83700 7.52
1.1607 83800 7.2978
1.1621 83900 7.3555
1.1635 84000 7.3361
1.1649 84100 7.2406
1.1663 84200 7.2947
1.1677 84300 7.2942
1.1691 84400 7.3177
1.1704 84500 7.2963
1.1718 84600 7.2908
1.1732 84700 7.2457
1.1746 84800 7.2618
1.1760 84900 7.514
1.1774 85000 7.3102
1.1788 85100 7.3237
1.1801 85200 7.2595
1.1815 85300 7.2821
1.1829 85400 7.3547
1.1843 85500 7.396
1.1857 85600 7.2676
1.1871 85700 7.3227
1.1884 85800 7.3225
1.1898 85900 7.2408
1.1912 86000 7.3037
1.1926 86100 7.4073
1.1940 86200 7.3617
1.1954 86300 7.2086
1.1968 86400 7.284
1.1981 86500 7.3013
1.1995 86600 7.3076
1.2009 86700 7.3685
1.2023 86800 7.3377
1.2037 86900 7.2616
1.2051 87000 7.2616
1.2065 87100 7.2915
1.2078 87200 7.289
1.2092 87300 7.2968
1.2106 87400 7.3223
1.2120 87500 7.2481
1.2134 87600 7.3249
1.2148 87700 7.3112
1.2162 87800 7.2952
1.2175 87900 7.3203
1.2189 88000 7.3692
1.2203 88100 7.3355
1.2217 88200 7.2964
1.2231 88300 7.3091
1.2245 88400 7.3556
1.2258 88500 7.2728
1.2272 88600 7.2778
1.2286 88700 7.3681
1.2300 88800 7.4325
1.2314 88900 7.3973
1.2328 89000 7.2885
1.2342 89100 7.2751
1.2355 89200 7.3334
1.2369 89300 7.2966
1.2383 89400 7.3054
1.2397 89500 7.3601
1.2411 89600 7.2663
1.2425 89700 7.3973
1.2439 89800 7.2849
1.2452 89900 7.2895
1.2466 90000 7.3619
1.2480 90100 7.2077
1.2494 90200 7.3385
1.2508 90300 7.3073
1.2522 90400 7.2213
1.2535 90500 7.2342
1.2549 90600 7.2856
1.2563 90700 7.2935
1.2577 90800 7.3183
1.2591 90900 7.2298
1.2605 91000 7.2601
1.2619 91100 7.2985
1.2632 91200 7.4139
1.2646 91300 7.3361
1.2660 91400 7.2492
1.2674 91500 7.3921
1.2688 91600 7.2611
1.2702 91700 7.3293
1.2716 91800 7.2353
1.2729 91900 7.3171
1.2743 92000 7.2595
1.2757 92100 7.4438
1.2771 92200 7.2778
1.2785 92300 7.3256
1.2799 92400 7.276
1.2813 92500 7.3479
1.2826 92600 7.2804
1.2840 92700 7.2948
1.2854 92800 7.4036
1.2868 92900 7.222
1.2882 93000 7.3593
1.2896 93100 7.3352
1.2909 93200 7.2914
1.2923 93300 7.2763
1.2937 93400 7.2375
1.2951 93500 7.4418
1.2965 93600 7.2586
1.2979 93700 7.2058
1.2993 93800 7.3489
1.3006 93900 7.362
1.3020 94000 7.2551
1.3034 94100 7.2958
1.3048 94200 7.3102
1.3062 94300 7.3221
1.3076 94400 7.2793
1.3090 94500 7.26
1.3103 94600 7.2709
1.3117 94700 7.3238
1.3131 94800 7.2739
1.3145 94900 7.4183
1.3159 95000 7.2724
1.3173 95100 7.3242
1.3187 95200 7.3507
1.3200 95300 7.3176
1.3214 95400 7.3176
1.3228 95500 7.2661
1.3242 95600 7.2937
1.3256 95700 7.2534
1.3270 95800 7.2968
1.3283 95900 7.2468
1.3297 96000 7.2918
1.3311 96100 7.2948
1.3325 96200 7.2513
1.3339 96300 7.2704
1.3353 96400 7.3045
1.3367 96500 7.2794
1.3380 96600 7.3222
1.3394 96700 7.2857
1.3408 96800 7.2943
1.3422 96900 7.3453
1.3436 97000 7.2388
1.3450 97100 7.2895
1.3464 97200 7.229
1.3477 97300 7.2526
1.3491 97400 7.2467
1.3505 97500 7.2639
1.3519 97600 7.2831
1.3533 97700 7.2909
1.3547 97800 7.2847
1.3560 97900 7.2349
1.3574 98000 7.319
1.3588 98100 7.2362
1.3602 98200 7.2725
1.3616 98300 7.2391
1.3630 98400 7.3388
1.3644 98500 7.2702
1.3657 98600 7.2286
1.3671 98700 7.2717
1.3685 98800 7.3822
1.3699 98900 7.2926
1.3713 99000 7.2182
1.3727 99100 7.28
1.3741 99200 7.2378
1.3754 99300 7.2456
1.3768 99400 7.2593
1.3782 99500 7.3145
1.3796 99600 7.2684
1.3810 99700 7.2651
1.3824 99800 7.4173
1.3838 99900 7.2751
1.3851 100000 7.2491
1.3865 100100 7.2845
1.3879 100200 7.3182
1.3893 100300 7.2885
1.3907 100400 7.3249
1.3921 100500 7.254
1.3934 100600 7.3301
1.3948 100700 7.3452
1.3962 100800 7.3694
1.3976 100900 7.3154
1.3990 101000 7.3396
1.4004 101100 7.27
1.4018 101200 7.2621
1.4031 101300 7.2029
1.4045 101400 7.331
1.4059 101500 7.3149
1.4073 101600 7.2788
1.4087 101700 7.3523
1.4101 101800 7.3014
1.4115 101900 7.2616
1.4128 102000 7.2602
1.4142 102100 7.2498
1.4156 102200 7.2114
1.4170 102300 7.3653
1.4184 102400 7.2166
1.4198 102500 7.3101
1.4212 102600 7.2574
1.4225 102700 7.2818
1.4239 102800 7.2145
1.4253 102900 7.2476
1.4267 103000 7.2888
1.4281 103100 7.2163
1.4295 103200 7.3711
1.4308 103300 7.2489
1.4322 103400 7.2292
1.4336 103500 7.2491
1.4350 103600 7.3212
1.4364 103700 7.2639
1.4378 103800 7.3089
1.4392 103900 7.2779
1.4405 104000 7.3155
1.4419 104100 7.2115
1.4433 104200 7.3391
1.4447 104300 7.2188
1.4461 104400 7.2209
1.4475 104500 7.3225
1.4489 104600 7.2543
1.4502 104700 7.2525
1.4516 104800 7.2271
1.4530 104900 7.3591
1.4544 105000 7.237
1.4558 105100 7.3607
1.4572 105200 7.2568
1.4585 105300 7.2395
1.4599 105400 7.2935
1.4613 105500 7.2194
1.4627 105600 7.304
1.4641 105700 7.3893
1.4655 105800 7.2216
1.4669 105900 7.2949
1.4682 106000 7.2691
1.4696 106100 7.3334
1.4710 106200 7.281
1.4724 106300 7.2565
1.4738 106400 7.2226
1.4752 106500 7.2452
1.4766 106600 7.3098
1.4779 106700 7.2649
1.4793 106800 7.3281
1.4807 106900 7.2722
1.4821 107000 7.2177
1.4835 107100 7.2043
1.4849 107200 7.2671
1.4863 107300 7.2501
1.4876 107400 7.2534
1.4890 107500 7.3216
1.4904 107600 7.2418
1.4918 107700 7.2567
1.4932 107800 7.3441
1.4946 107900 7.2208
1.4959 108000 7.2493
1.4973 108100 7.1953
1.4987 108200 7.2735
1.5001 108300 7.2258
1.5015 108400 7.2755
1.5029 108500 7.3782
1.5043 108600 7.2687
1.5056 108700 7.2051
1.5070 108800 7.2598
1.5084 108900 7.3847
1.5098 109000 7.3324
1.5112 109100 7.3764
1.5126 109200 7.1785
1.5140 109300 7.1508
1.5153 109400 7.2605
1.5167 109500 7.31
1.5181 109600 7.1958
1.5195 109700 7.2969
1.5209 109800 7.2474
1.5223 109900 7.3419
1.5237 110000 7.2003
1.5250 110100 7.3295
1.5264 110200 7.2454
1.5278 110300 7.405
1.5292 110400 7.2635
1.5306 110500 7.3025
1.5320 110600 7.2598
1.5333 110700 7.2024
1.5347 110800 7.3334
1.5361 110900 7.3674
1.5375 111000 7.3582
1.5389 111100 7.2932
1.5403 111200 7.3041
1.5417 111300 7.2761
1.5430 111400 7.3147
1.5444 111500 7.2792
1.5458 111600 7.2588
1.5472 111700 7.3237
1.5486 111800 7.2753
1.5500 111900 7.2836
1.5514 112000 7.3307
1.5527 112100 7.3432
1.5541 112200 7.2979
1.5555 112300 7.3817
1.5569 112400 7.2638
1.5583 112500 7.2785
1.5597 112600 7.3536
1.5610 112700 7.2943
1.5624 112800 7.2741
1.5638 112900 7.2633
1.5652 113000 7.247
1.5666 113100 7.1662
1.5680 113200 7.347
1.5694 113300 7.2849
1.5707 113400 7.3489
1.5721 113500 7.3477
1.5735 113600 7.2552
1.5749 113700 7.2563
1.5763 113800 7.2471
1.5777 113900 7.2909
1.5791 114000 7.251
1.5804 114100 7.3171
1.5818 114200 7.4248
1.5832 114300 7.2114
1.5846 114400 7.241
1.5860 114500 7.2263
1.5874 114600 7.2776
1.5888 114700 7.3533
1.5901 114800 7.3478
1.5915 114900 7.2882
1.5929 115000 7.2262
1.5943 115100 7.282
1.5957 115200 7.286
1.5971 115300 7.4238
1.5984 115400 7.193
1.5998 115500 7.2678
1.6012 115600 7.3548
1.6026 115700 7.2558
1.6040 115800 7.2898
1.6054 115900 7.2723
1.6068 116000 7.2531
1.6081 116100 7.3313
1.6095 116200 7.3336
1.6109 116300 7.2539
1.6123 116400 7.3484
1.6137 116500 7.3251
1.6151 116600 7.3204
1.6165 116700 7.2621
1.6178 116800 7.2527
1.6192 116900 7.303
1.6206 117000 7.2788
1.6220 117100 7.395
1.6234 117200 7.1757
1.6248 117300 7.216
1.6262 117400 7.275
1.6275 117500 7.2277
1.6289 117600 7.2963
1.6303 117700 7.2011
1.6317 117800 7.347
1.6331 117900 7.3544
1.6345 118000 7.1978
1.6358 118100 7.1995
1.6372 118200 7.2984
1.6386 118300 7.3018
1.6400 118400 7.3958
1.6414 118500 7.2256
1.6428 118600 7.2258
1.6442 118700 7.3282
1.6455 118800 7.2084
1.6469 118900 7.2632
1.6483 119000 7.1895
1.6497 119100 7.3273
1.6511 119200 7.2591
1.6525 119300 7.1587
1.6539 119400 7.2532
1.6552 119500 7.29
1.6566 119600 7.2342
1.6580 119700 7.3236
1.6594 119800 7.2586
1.6608 119900 7.2223
1.6622 120000 7.2885
1.6636 120100 7.3203
1.6649 120200 7.1958
1.6663 120300 7.3348
1.6677 120400 7.2592
1.6691 120500 7.2964
1.6705 120600 7.3665
1.6719 120700 7.3457
1.6732 120800 7.3281
1.6746 120900 7.2619
1.6760 121000 7.2858
1.6774 121100 7.1996
1.6788 121200 7.2603
1.6802 121300 7.3763
1.6816 121400 7.2459
1.6829 121500 7.2635
1.6843 121600 7.283
1.6857 121700 7.2739
1.6871 121800 7.2171
1.6885 121900 7.3146
1.6899 122000 7.323
1.6913 122100 7.1654
1.6926 122200 7.2916
1.6940 122300 7.3495
1.6954 122400 7.3251
1.6968 122500 7.2885
1.6982 122600 7.2941
1.6996 122700 7.3157
1.7009 122800 7.303
1.7023 122900 7.337
1.7037 123000 7.2599
1.7051 123100 7.4682
1.7065 123200 7.3208
1.7079 123300 7.1896
1.7093 123400 7.3005
1.7106 123500 7.2762
1.7120 123600 7.304
1.7134 123700 7.3425
1.7148 123800 7.2201
1.7162 123900 7.2791
1.7176 124000 7.3113
1.7190 124100 7.3157
1.7203 124200 7.232
1.7217 124300 7.2496
1.7231 124400 7.2496
1.7245 124500 7.3078
1.7259 124600 7.2776
1.7273 124700 7.2416
1.7287 124800 7.2276
1.7300 124900 7.2176
1.7314 125000 7.2968
1.7328 125100 7.2269
1.7342 125200 7.3002
1.7356 125300 7.2831
1.7370 125400 7.2629
1.7383 125500 7.2559
1.7397 125600 7.2543
1.7411 125700 7.2541
1.7425 125800 7.2313
1.7439 125900 7.1851
1.7453 126000 7.2618
1.7467 126100 7.2129
1.7480 126200 7.3138
1.7494 126300 7.2079
1.7508 126400 7.2541
1.7522 126500 7.2436
1.7536 126600 7.1823
1.7550 126700 7.2493
1.7564 126800 7.2571
1.7577 126900 7.3308
1.7591 127000 7.2753
1.7605 127100 7.2871
1.7619 127200 7.251
1.7633 127300 7.2666
1.7647 127400 7.2948
1.7661 127500 7.2524
1.7674 127600 7.253
1.7688 127700 7.3304
1.7702 127800 7.2508
1.7716 127900 7.2656
1.7730 128000 7.208
1.7744 128100 7.2835
1.7757 128200 7.2917
1.7771 128300 7.3324
1.7785 128400 7.3041
1.7799 128500 7.2009
1.7813 128600 7.228
1.7827 128700 7.2392
1.7841 128800 7.2507
1.7854 128900 7.2393
1.7868 129000 7.3327
1.7882 129100 7.2483
1.7896 129200 7.2251
1.7910 129300 7.2746
1.7924 129400 7.2657
1.7938 129500 7.2932
1.7951 129600 7.2214
1.7965 129700 7.3007
1.7979 129800 7.3012
1.7993 129900 7.3381
1.8007 130000 7.2445
1.8021 130100 7.2947
1.8034 130200 7.3638
1.8048 130300 7.1481
1.8062 130400 7.35
1.8076 130500 7.2191
1.8090 130600 7.1955
1.8104 130700 7.2246
1.8118 130800 7.2147
1.8131 130900 7.389
1.8145 131000 7.2294
1.8159 131100 7.26
1.8173 131200 7.2029
1.8187 131300 7.2048
1.8201 131400 7.3253
1.8215 131500 7.2978
1.8228 131600 7.1918
1.8242 131700 7.3486
1.8256 131800 7.2614
1.8270 131900 7.3623
1.8284 132000 7.3129
1.8298 132100 7.347
1.8312 132200 7.3505
1.8325 132300 7.2612
1.8339 132400 7.2202
1.8353 132500 7.2916
1.8367 132600 7.3288
1.8381 132700 7.2696
1.8395 132800 7.2519
1.8408 132900 7.1845
1.8422 133000 7.2877
1.8436 133100 7.2848
1.8450 133200 7.2512
1.8464 133300 7.2312
1.8478 133400 7.2285
1.8492 133500 7.1976
1.8505 133600 7.1802
1.8519 133700 7.2701
1.8533 133800 7.1756
1.8547 133900 7.2435
1.8561 134000 7.2713
1.8575 134100 7.2927
1.8589 134200 7.2017
1.8602 134300 7.3566
1.8616 134400 7.1892
1.8630 134500 7.3347
1.8644 134600 7.2236
1.8658 134700 7.241
1.8672 134800 7.2635
1.8686 134900 7.2871
1.8699 135000 7.2796
1.8713 135100 7.4457
1.8727 135200 7.2514
1.8741 135300 7.2633
1.8755 135400 7.2642
1.8769 135500 7.2776
1.8782 135600 7.192
1.8796 135700 7.322
1.8810 135800 7.2899
1.8824 135900 7.2228
1.8838 136000 7.26
1.8852 136100 7.2666
1.8866 136200 7.3477
1.8879 136300 7.2203
1.8893 136400 7.2297
1.8907 136500 7.2041
1.8921 136600 7.3099
1.8935 136700 7.3485
1.8949 136800 7.2185
1.8963 136900 7.2606
1.8976 137000 7.1893
1.8990 137100 7.2613
1.9004 137200 7.3213
1.9018 137300 7.2511
1.9032 137400 7.3002
1.9046 137500 7.167
1.9059 137600 7.2053
1.9073 137700 7.2851
1.9087 137800 7.2939
1.9101 137900 7.2577
1.9115 138000 7.1748
1.9129 138100 7.2824
1.9143 138200 7.2703
1.9156 138300 7.1525
1.9170 138400 7.2948
1.9184 138500 7.2479
1.9198 138600 7.1972
1.9212 138700 7.339
1.9226 138800 7.2599
1.9240 138900 7.3349
1.9253 139000 7.3202
1.9267 139100 7.2934
1.9281 139200 7.3146
1.9295 139300 7.3887
1.9309 139400 7.1811
1.9323 139500 7.276
1.9337 139600 7.1999
1.9350 139700 7.2229
1.9364 139800 7.3258
1.9378 139900 7.2649
1.9392 140000 7.1668
1.9406 140100 7.3522
1.9420 140200 7.3098
1.9433 140300 7.2389
1.9447 140400 7.2339
1.9461 140500 7.2399
1.9475 140600 7.3191
1.9489 140700 7.0822
1.9503 140800 7.3
1.9517 140900 7.2491
1.9530 141000 7.3246
1.9544 141100 7.2707
1.9558 141200 7.2584
1.9572 141300 7.2662
1.9586 141400 7.1185
1.9600 141500 7.2166
1.9614 141600 7.3627
1.9627 141700 7.4347
1.9641 141800 7.1925
1.9655 141900 7.2983
1.9669 142000 7.2559
1.9683 142100 7.2476
1.9697 142200 7.2545
1.9711 142300 7.3182
1.9724 142400 7.2705
1.9738 142500 7.259
1.9752 142600 7.2596
1.9766 142700 7.3109
1.9780 142800 7.2639
1.9794 142900 7.2192
1.9807 143000 7.3124
1.9821 143100 7.3296
1.9835 143200 7.3416
1.9849 143300 7.1995
1.9863 143400 7.3072
1.9877 143500 7.2305
1.9891 143600 7.2476
1.9904 143700 7.2761
1.9918 143800 7.2466
1.9932 143900 7.4312
1.9946 144000 7.2177
1.9960 144100 7.2431
1.9974 144200 7.2175
1.9988 144300 7.3031

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
2
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for youssefkhalil320/all-MiniLM-L6-v22-pair_score

Finetuned
(451)
this model