youssefkhalil320 commited on
Commit
c0e1db9
·
verified ·
1 Parent(s): 9cef60f

Upload folder using huggingface_hub

Browse files
checkpoint-14500/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-14500/README.md ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ pipeline_tag: sentence-similarity
8
+ tags:
9
+ - sentence-transformers
10
+ - sentence-similarity
11
+ - feature-extraction
12
+ - generated_from_trainer
13
+ - dataset_size:2400000
14
+ - loss:CoSENTLoss
15
+ widget:
16
+ - source_sentence: poolside pants
17
+ sentences:
18
+ - safe materials toy
19
+ - plated necklace
20
+ - washed cargo pants
21
+ - source_sentence: breathable pants
22
+ sentences:
23
+ - extra definition mascara
24
+ - christmas trees hair clip
25
+ - milton shorts
26
+ - source_sentence: mozzarella cheese burger
27
+ sentences:
28
+ - ankle length leggings
29
+ - nail polish
30
+ - olive shacket
31
+ - source_sentence: cookie brownie
32
+ sentences:
33
+ - lime top
34
+ - mdf coffee corner stand
35
+ - learning flashcards
36
+ - source_sentence: no artificial flavouring food
37
+ sentences:
38
+ - eye pencil
39
+ - tourmaline ceramic brush
40
+ - rubber dog toy
41
+ ---
42
+
43
+ # all-MiniLM-L6-v9-pair_score
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
52
+ - **Maximum Sequence Length:** 256 tokens
53
+ - **Output Dimensionality:** 384 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ - **Language:** en
57
+ - **License:** apache-2.0
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ (2): Normalize()
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("sentence_transformers_model_id")
91
+ # Run inference
92
+ sentences = [
93
+ 'no artificial flavouring food',
94
+ 'rubber dog toy',
95
+ 'tourmaline ceramic brush',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 384]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Hyperparameters
146
+ #### Non-Default Hyperparameters
147
+
148
+ - `eval_strategy`: steps
149
+ - `per_device_train_batch_size`: 128
150
+ - `per_device_eval_batch_size`: 128
151
+ - `learning_rate`: 2e-05
152
+ - `num_train_epochs`: 1
153
+ - `warmup_ratio`: 0.1
154
+ - `fp16`: True
155
+
156
+ #### All Hyperparameters
157
+ <details><summary>Click to expand</summary>
158
+
159
+ - `overwrite_output_dir`: False
160
+ - `do_predict`: False
161
+ - `eval_strategy`: steps
162
+ - `prediction_loss_only`: True
163
+ - `per_device_train_batch_size`: 128
164
+ - `per_device_eval_batch_size`: 128
165
+ - `per_gpu_train_batch_size`: None
166
+ - `per_gpu_eval_batch_size`: None
167
+ - `gradient_accumulation_steps`: 1
168
+ - `eval_accumulation_steps`: None
169
+ - `torch_empty_cache_steps`: None
170
+ - `learning_rate`: 2e-05
171
+ - `weight_decay`: 0.0
172
+ - `adam_beta1`: 0.9
173
+ - `adam_beta2`: 0.999
174
+ - `adam_epsilon`: 1e-08
175
+ - `max_grad_norm`: 1.0
176
+ - `num_train_epochs`: 1
177
+ - `max_steps`: -1
178
+ - `lr_scheduler_type`: linear
179
+ - `lr_scheduler_kwargs`: {}
180
+ - `warmup_ratio`: 0.1
181
+ - `warmup_steps`: 0
182
+ - `log_level`: passive
183
+ - `log_level_replica`: warning
184
+ - `log_on_each_node`: True
185
+ - `logging_nan_inf_filter`: True
186
+ - `save_safetensors`: True
187
+ - `save_on_each_node`: False
188
+ - `save_only_model`: False
189
+ - `restore_callback_states_from_checkpoint`: False
190
+ - `no_cuda`: False
191
+ - `use_cpu`: False
192
+ - `use_mps_device`: False
193
+ - `seed`: 42
194
+ - `data_seed`: None
195
+ - `jit_mode_eval`: False
196
+ - `use_ipex`: False
197
+ - `bf16`: False
198
+ - `fp16`: True
199
+ - `fp16_opt_level`: O1
200
+ - `half_precision_backend`: auto
201
+ - `bf16_full_eval`: False
202
+ - `fp16_full_eval`: False
203
+ - `tf32`: None
204
+ - `local_rank`: 0
205
+ - `ddp_backend`: None
206
+ - `tpu_num_cores`: None
207
+ - `tpu_metrics_debug`: False
208
+ - `debug`: []
209
+ - `dataloader_drop_last`: False
210
+ - `dataloader_num_workers`: 0
211
+ - `dataloader_prefetch_factor`: None
212
+ - `past_index`: -1
213
+ - `disable_tqdm`: False
214
+ - `remove_unused_columns`: True
215
+ - `label_names`: None
216
+ - `load_best_model_at_end`: False
217
+ - `ignore_data_skip`: False
218
+ - `fsdp`: []
219
+ - `fsdp_min_num_params`: 0
220
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
221
+ - `fsdp_transformer_layer_cls_to_wrap`: None
222
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
223
+ - `deepspeed`: None
224
+ - `label_smoothing_factor`: 0.0
225
+ - `optim`: adamw_torch
226
+ - `optim_args`: None
227
+ - `adafactor`: False
228
+ - `group_by_length`: False
229
+ - `length_column_name`: length
230
+ - `ddp_find_unused_parameters`: None
231
+ - `ddp_bucket_cap_mb`: None
232
+ - `ddp_broadcast_buffers`: False
233
+ - `dataloader_pin_memory`: True
234
+ - `dataloader_persistent_workers`: False
235
+ - `skip_memory_metrics`: True
236
+ - `use_legacy_prediction_loop`: False
237
+ - `push_to_hub`: False
238
+ - `resume_from_checkpoint`: None
239
+ - `hub_model_id`: None
240
+ - `hub_strategy`: every_save
241
+ - `hub_private_repo`: False
242
+ - `hub_always_push`: False
243
+ - `gradient_checkpointing`: False
244
+ - `gradient_checkpointing_kwargs`: None
245
+ - `include_inputs_for_metrics`: False
246
+ - `eval_do_concat_batches`: True
247
+ - `fp16_backend`: auto
248
+ - `push_to_hub_model_id`: None
249
+ - `push_to_hub_organization`: None
250
+ - `mp_parameters`:
251
+ - `auto_find_batch_size`: False
252
+ - `full_determinism`: False
253
+ - `torchdynamo`: None
254
+ - `ray_scope`: last
255
+ - `ddp_timeout`: 1800
256
+ - `torch_compile`: False
257
+ - `torch_compile_backend`: None
258
+ - `torch_compile_mode`: None
259
+ - `dispatch_batches`: None
260
+ - `split_batches`: None
261
+ - `include_tokens_per_second`: False
262
+ - `include_num_input_tokens_seen`: False
263
+ - `neftune_noise_alpha`: None
264
+ - `optim_target_modules`: None
265
+ - `batch_eval_metrics`: False
266
+ - `eval_on_start`: False
267
+ - `use_liger_kernel`: False
268
+ - `eval_use_gather_object`: False
269
+ - `batch_sampler`: batch_sampler
270
+ - `multi_dataset_batch_sampler`: proportional
271
+
272
+ </details>
273
+
274
+ ### Training Logs
275
+ <details><summary>Click to expand</summary>
276
+
277
+ | Epoch | Step | Training Loss |
278
+ |:------:|:-----:|:-------------:|
279
+ | 0.0053 | 100 | 13.2077 |
280
+ | 0.0107 | 200 | 12.3835 |
281
+ | 0.016 | 300 | 10.7699 |
282
+ | 0.0213 | 400 | 9.2679 |
283
+ | 0.0267 | 500 | 8.2638 |
284
+ | 0.032 | 600 | 7.69 |
285
+ | 0.0373 | 700 | 7.2751 |
286
+ | 0.0427 | 800 | 6.8786 |
287
+ | 0.048 | 900 | 6.7811 |
288
+ | 0.0533 | 1000 | 6.5834 |
289
+ | 0.0587 | 1100 | 6.3517 |
290
+ | 0.064 | 1200 | 6.2272 |
291
+ | 0.0693 | 1300 | 6.1943 |
292
+ | 0.0747 | 1400 | 6.1038 |
293
+ | 0.08 | 1500 | 6.1216 |
294
+ | 0.0853 | 1600 | 6.1429 |
295
+ | 0.0907 | 1700 | 5.8876 |
296
+ | 0.096 | 1800 | 5.8074 |
297
+ | 0.1013 | 1900 | 5.6261 |
298
+ | 0.1067 | 2000 | 5.838 |
299
+ | 0.112 | 2100 | 5.7161 |
300
+ | 0.1173 | 2200 | 5.5388 |
301
+ | 0.1227 | 2300 | 5.5654 |
302
+ | 0.128 | 2400 | 5.5196 |
303
+ | 0.1333 | 2500 | 5.3665 |
304
+ | 0.1387 | 2600 | 5.2952 |
305
+ | 0.144 | 2700 | 5.4131 |
306
+ | 0.1493 | 2800 | 5.2104 |
307
+ | 0.1547 | 2900 | 5.2176 |
308
+ | 0.16 | 3000 | 4.9406 |
309
+ | 0.1653 | 3100 | 4.8781 |
310
+ | 0.1707 | 3200 | 5.08 |
311
+ | 0.176 | 3300 | 5.1495 |
312
+ | 0.1813 | 3400 | 4.8717 |
313
+ | 0.1867 | 3500 | 4.8196 |
314
+ | 0.192 | 3600 | 4.8065 |
315
+ | 0.1973 | 3700 | 4.718 |
316
+ | 0.2027 | 3800 | 4.7111 |
317
+ | 0.208 | 3900 | 4.6759 |
318
+ | 0.2133 | 4000 | 4.7733 |
319
+ | 0.2187 | 4100 | 4.7041 |
320
+ | 0.224 | 4200 | 4.7898 |
321
+ | 0.2293 | 4300 | 4.8974 |
322
+ | 0.2347 | 4400 | 4.4939 |
323
+ | 0.24 | 4500 | 4.4107 |
324
+ | 0.2453 | 4600 | 4.4831 |
325
+ | 0.2507 | 4700 | 4.4571 |
326
+ | 0.256 | 4800 | 4.1461 |
327
+ | 0.2613 | 4900 | 4.5198 |
328
+ | 0.2667 | 5000 | 4.4998 |
329
+ | 0.272 | 5100 | 4.2135 |
330
+ | 0.2773 | 5200 | 4.441 |
331
+ | 0.2827 | 5300 | 4.2669 |
332
+ | 0.288 | 5400 | 4.0964 |
333
+ | 0.2933 | 5500 | 4.2048 |
334
+ | 0.2987 | 5600 | 4.2123 |
335
+ | 0.304 | 5700 | 4.3391 |
336
+ | 0.3093 | 5800 | 4.3366 |
337
+ | 0.3147 | 5900 | 4.1775 |
338
+ | 0.32 | 6000 | 3.9954 |
339
+ | 0.3253 | 6100 | 4.141 |
340
+ | 0.3307 | 6200 | 4.09 |
341
+ | 0.336 | 6300 | 3.9517 |
342
+ | 0.3413 | 6400 | 3.9844 |
343
+ | 0.3467 | 6500 | 3.8902 |
344
+ | 0.352 | 6600 | 3.571 |
345
+ | 0.3573 | 6700 | 3.7686 |
346
+ | 0.3627 | 6800 | 3.7766 |
347
+ | 0.368 | 6900 | 4.0305 |
348
+ | 0.3733 | 7000 | 4.2835 |
349
+ | 0.3787 | 7100 | 3.8102 |
350
+ | 0.384 | 7200 | 3.5178 |
351
+ | 0.3893 | 7300 | 3.8828 |
352
+ | 0.3947 | 7400 | 3.9125 |
353
+ | 0.4 | 7500 | 3.8578 |
354
+ | 0.4053 | 7600 | 3.7391 |
355
+ | 0.4107 | 7700 | 3.7178 |
356
+ | 0.416 | 7800 | 3.6572 |
357
+ | 0.4213 | 7900 | 3.835 |
358
+ | 0.4267 | 8000 | 3.4354 |
359
+ | 0.432 | 8100 | 3.6725 |
360
+ | 0.4373 | 8200 | 3.2932 |
361
+ | 0.4427 | 8300 | 3.7056 |
362
+ | 0.448 | 8400 | 3.9801 |
363
+ | 0.4533 | 8500 | 3.7294 |
364
+ | 0.4587 | 8600 | 3.6412 |
365
+ | 0.464 | 8700 | 3.4301 |
366
+ | 0.4693 | 8800 | 3.4932 |
367
+ | 0.4747 | 8900 | 3.1855 |
368
+ | 0.48 | 9000 | 3.4505 |
369
+ | 0.4853 | 9100 | 3.4431 |
370
+ | 0.4907 | 9200 | 3.0782 |
371
+ | 0.496 | 9300 | 3.3604 |
372
+ | 0.5013 | 9400 | 3.3833 |
373
+ | 0.5067 | 9500 | 3.2887 |
374
+ | 0.512 | 9600 | 3.1361 |
375
+ | 0.5173 | 9700 | 3.7856 |
376
+ | 0.5227 | 9800 | 3.4907 |
377
+ | 0.528 | 9900 | 3.4553 |
378
+ | 0.5333 | 10000 | 3.2604 |
379
+ | 0.5387 | 10100 | 3.4325 |
380
+ | 0.544 | 10200 | 3.319 |
381
+ | 0.5493 | 10300 | 3.3623 |
382
+ | 0.5547 | 10400 | 3.4278 |
383
+ | 0.56 | 10500 | 3.0365 |
384
+ | 0.5653 | 10600 | 3.1647 |
385
+ | 0.5707 | 10700 | 3.387 |
386
+ | 0.576 | 10800 | 3.0888 |
387
+ | 0.5813 | 10900 | 3.2073 |
388
+ | 0.5867 | 11000 | 3.0386 |
389
+ | 0.592 | 11100 | 3.222 |
390
+ | 0.5973 | 11200 | 3.1902 |
391
+ | 0.6027 | 11300 | 3.2242 |
392
+ | 0.608 | 11400 | 2.9589 |
393
+ | 0.6133 | 11500 | 2.831 |
394
+ | 0.6187 | 11600 | 3.0551 |
395
+ | 0.624 | 11700 | 2.8091 |
396
+ | 0.6293 | 11800 | 3.2146 |
397
+ | 0.6347 | 11900 | 3.1964 |
398
+ | 0.64 | 12000 | 2.9525 |
399
+ | 0.6453 | 12100 | 3.2989 |
400
+ | 0.6507 | 12200 | 2.9683 |
401
+ | 0.656 | 12300 | 2.9026 |
402
+ | 0.6613 | 12400 | 3.1533 |
403
+ | 0.6667 | 12500 | 2.7657 |
404
+ | 0.672 | 12600 | 3.09 |
405
+ | 0.6773 | 12700 | 3.1612 |
406
+ | 0.6827 | 12800 | 2.9614 |
407
+ | 0.688 | 12900 | 3.0533 |
408
+ | 0.6933 | 13000 | 2.7601 |
409
+ | 0.6987 | 13100 | 2.9242 |
410
+ | 0.704 | 13200 | 2.5517 |
411
+ | 0.7093 | 13300 | 2.9859 |
412
+ | 0.7147 | 13400 | 2.7317 |
413
+ | 0.72 | 13500 | 2.7578 |
414
+ | 0.7253 | 13600 | 3.1413 |
415
+ | 0.7307 | 13700 | 3.0612 |
416
+ | 0.736 | 13800 | 2.8295 |
417
+ | 0.7413 | 13900 | 2.6263 |
418
+ | 0.7467 | 14000 | 2.7181 |
419
+ | 0.752 | 14100 | 2.8643 |
420
+ | 0.7573 | 14200 | 2.903 |
421
+ | 0.7627 | 14300 | 2.7787 |
422
+ | 0.768 | 14400 | 2.991 |
423
+ | 0.7733 | 14500 | 2.8306 |
424
+
425
+ </details>
426
+
427
+ ### Framework Versions
428
+ - Python: 3.8.10
429
+ - Sentence Transformers: 3.1.1
430
+ - Transformers: 4.45.2
431
+ - PyTorch: 2.4.1+cu118
432
+ - Accelerate: 1.0.1
433
+ - Datasets: 3.0.1
434
+ - Tokenizers: 0.20.3
435
+
436
+ ## Citation
437
+
438
+ ### BibTeX
439
+
440
+ #### Sentence Transformers
441
+ ```bibtex
442
+ @inproceedings{reimers-2019-sentence-bert,
443
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
444
+ author = "Reimers, Nils and Gurevych, Iryna",
445
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
446
+ month = "11",
447
+ year = "2019",
448
+ publisher = "Association for Computational Linguistics",
449
+ url = "https://arxiv.org/abs/1908.10084",
450
+ }
451
+ ```
452
+
453
+ #### CoSENTLoss
454
+ ```bibtex
455
+ @online{kexuefm-8847,
456
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
457
+ author={Su Jianlin},
458
+ year={2022},
459
+ month={Jan},
460
+ url={https://kexue.fm/archives/8847},
461
+ }
462
+ ```
463
+
464
+ <!--
465
+ ## Glossary
466
+
467
+ *Clearly define terms in order to be accessible across audiences.*
468
+ -->
469
+
470
+ <!--
471
+ ## Model Card Authors
472
+
473
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Contact
478
+
479
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
480
+ -->
checkpoint-14500/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-14500/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-14500/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8872edc88bf361942476b2d209c38c7287f80f43f959a197efa9111b545d9fb
3
+ size 90864192
checkpoint-14500/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-14500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e26f0cbf806d067a289be04966fc4e461d7d19d51cf15a9bd225e4ba320b73be
3
+ size 180607738
checkpoint-14500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccbc7a91ec63d1ef34399d98fe71f72ed4462e0d0f0a33724deb951f31c28097
3
+ size 14244
checkpoint-14500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cf4f74cf2b91782bdd7e3ab73b8e49add2073a397ba80f6730bbc7cf0b69d2e
3
+ size 1064
checkpoint-14500/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-14500/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-14500/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-14500/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
checkpoint-14500/trainer_state.json ADDED
@@ -0,0 +1,1048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.7733333333333333,
5
+ "eval_steps": 200000,
6
+ "global_step": 14500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005333333333333333,
13
+ "grad_norm": 87.1787109375,
14
+ "learning_rate": 1.0346666666666668e-06,
15
+ "loss": 13.2077,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.010666666666666666,
20
+ "grad_norm": 93.43941497802734,
21
+ "learning_rate": 2.1013333333333335e-06,
22
+ "loss": 12.3835,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.016,
27
+ "grad_norm": 48.778316497802734,
28
+ "learning_rate": 3.1680000000000004e-06,
29
+ "loss": 10.7699,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.021333333333333333,
34
+ "grad_norm": 58.05220413208008,
35
+ "learning_rate": 4.234666666666667e-06,
36
+ "loss": 9.2679,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.02666666666666667,
41
+ "grad_norm": 23.75503158569336,
42
+ "learning_rate": 5.301333333333334e-06,
43
+ "loss": 8.2638,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.032,
48
+ "grad_norm": 15.003210067749023,
49
+ "learning_rate": 6.368000000000001e-06,
50
+ "loss": 7.69,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.037333333333333336,
55
+ "grad_norm": 17.561220169067383,
56
+ "learning_rate": 7.434666666666668e-06,
57
+ "loss": 7.2751,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 0.042666666666666665,
62
+ "grad_norm": 18.077470779418945,
63
+ "learning_rate": 8.501333333333334e-06,
64
+ "loss": 6.8786,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 0.048,
69
+ "grad_norm": 23.71312141418457,
70
+ "learning_rate": 9.568e-06,
71
+ "loss": 6.7811,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 0.05333333333333334,
76
+ "grad_norm": 23.78058624267578,
77
+ "learning_rate": 1.0634666666666667e-05,
78
+ "loss": 6.5834,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 0.058666666666666666,
83
+ "grad_norm": 21.788728713989258,
84
+ "learning_rate": 1.1701333333333333e-05,
85
+ "loss": 6.3517,
86
+ "step": 1100
87
+ },
88
+ {
89
+ "epoch": 0.064,
90
+ "grad_norm": 31.29090690612793,
91
+ "learning_rate": 1.2768e-05,
92
+ "loss": 6.2272,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 0.06933333333333333,
97
+ "grad_norm": 40.10956573486328,
98
+ "learning_rate": 1.3834666666666668e-05,
99
+ "loss": 6.1943,
100
+ "step": 1300
101
+ },
102
+ {
103
+ "epoch": 0.07466666666666667,
104
+ "grad_norm": 64.6901626586914,
105
+ "learning_rate": 1.4901333333333334e-05,
106
+ "loss": 6.1038,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 0.08,
111
+ "grad_norm": 37.49641036987305,
112
+ "learning_rate": 1.5968e-05,
113
+ "loss": 6.1216,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 0.08533333333333333,
118
+ "grad_norm": 104.68683624267578,
119
+ "learning_rate": 1.7034666666666668e-05,
120
+ "loss": 6.1429,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 0.09066666666666667,
125
+ "grad_norm": 26.25409698486328,
126
+ "learning_rate": 1.8101333333333336e-05,
127
+ "loss": 5.8876,
128
+ "step": 1700
129
+ },
130
+ {
131
+ "epoch": 0.096,
132
+ "grad_norm": 46.158363342285156,
133
+ "learning_rate": 1.9168000000000004e-05,
134
+ "loss": 5.8074,
135
+ "step": 1800
136
+ },
137
+ {
138
+ "epoch": 0.10133333333333333,
139
+ "grad_norm": 148.9814910888672,
140
+ "learning_rate": 1.997511111111111e-05,
141
+ "loss": 5.6261,
142
+ "step": 1900
143
+ },
144
+ {
145
+ "epoch": 0.10666666666666667,
146
+ "grad_norm": 32.8914909362793,
147
+ "learning_rate": 1.9856592592592595e-05,
148
+ "loss": 5.838,
149
+ "step": 2000
150
+ },
151
+ {
152
+ "epoch": 0.112,
153
+ "grad_norm": 38.54491424560547,
154
+ "learning_rate": 1.9738074074074077e-05,
155
+ "loss": 5.7161,
156
+ "step": 2100
157
+ },
158
+ {
159
+ "epoch": 0.11733333333333333,
160
+ "grad_norm": 38.57450485229492,
161
+ "learning_rate": 1.9619555555555555e-05,
162
+ "loss": 5.5388,
163
+ "step": 2200
164
+ },
165
+ {
166
+ "epoch": 0.12266666666666666,
167
+ "grad_norm": 48.14970779418945,
168
+ "learning_rate": 1.9501037037037037e-05,
169
+ "loss": 5.5654,
170
+ "step": 2300
171
+ },
172
+ {
173
+ "epoch": 0.128,
174
+ "grad_norm": 51.39189147949219,
175
+ "learning_rate": 1.9382518518518522e-05,
176
+ "loss": 5.5196,
177
+ "step": 2400
178
+ },
179
+ {
180
+ "epoch": 0.13333333333333333,
181
+ "grad_norm": 29.93403434753418,
182
+ "learning_rate": 1.9264e-05,
183
+ "loss": 5.3665,
184
+ "step": 2500
185
+ },
186
+ {
187
+ "epoch": 0.13866666666666666,
188
+ "grad_norm": 29.333316802978516,
189
+ "learning_rate": 1.9145481481481482e-05,
190
+ "loss": 5.2952,
191
+ "step": 2600
192
+ },
193
+ {
194
+ "epoch": 0.144,
195
+ "grad_norm": 119.10240936279297,
196
+ "learning_rate": 1.9026962962962964e-05,
197
+ "loss": 5.4131,
198
+ "step": 2700
199
+ },
200
+ {
201
+ "epoch": 0.14933333333333335,
202
+ "grad_norm": 60.21550750732422,
203
+ "learning_rate": 1.8908444444444446e-05,
204
+ "loss": 5.2104,
205
+ "step": 2800
206
+ },
207
+ {
208
+ "epoch": 0.15466666666666667,
209
+ "grad_norm": 49.59823989868164,
210
+ "learning_rate": 1.8789925925925928e-05,
211
+ "loss": 5.2176,
212
+ "step": 2900
213
+ },
214
+ {
215
+ "epoch": 0.16,
216
+ "grad_norm": 79.62650299072266,
217
+ "learning_rate": 1.867140740740741e-05,
218
+ "loss": 4.9406,
219
+ "step": 3000
220
+ },
221
+ {
222
+ "epoch": 0.16533333333333333,
223
+ "grad_norm": 124.49871063232422,
224
+ "learning_rate": 1.855288888888889e-05,
225
+ "loss": 4.8781,
226
+ "step": 3100
227
+ },
228
+ {
229
+ "epoch": 0.17066666666666666,
230
+ "grad_norm": 52.037776947021484,
231
+ "learning_rate": 1.8435555555555558e-05,
232
+ "loss": 5.08,
233
+ "step": 3200
234
+ },
235
+ {
236
+ "epoch": 0.176,
237
+ "grad_norm": 69.88233184814453,
238
+ "learning_rate": 1.8317037037037036e-05,
239
+ "loss": 5.1495,
240
+ "step": 3300
241
+ },
242
+ {
243
+ "epoch": 0.18133333333333335,
244
+ "grad_norm": 71.26051330566406,
245
+ "learning_rate": 1.819851851851852e-05,
246
+ "loss": 4.8717,
247
+ "step": 3400
248
+ },
249
+ {
250
+ "epoch": 0.18666666666666668,
251
+ "grad_norm": 41.996055603027344,
252
+ "learning_rate": 1.8080000000000003e-05,
253
+ "loss": 4.8196,
254
+ "step": 3500
255
+ },
256
+ {
257
+ "epoch": 0.192,
258
+ "grad_norm": 39.33742141723633,
259
+ "learning_rate": 1.796148148148148e-05,
260
+ "loss": 4.8065,
261
+ "step": 3600
262
+ },
263
+ {
264
+ "epoch": 0.19733333333333333,
265
+ "grad_norm": 63.21049118041992,
266
+ "learning_rate": 1.7842962962962963e-05,
267
+ "loss": 4.718,
268
+ "step": 3700
269
+ },
270
+ {
271
+ "epoch": 0.20266666666666666,
272
+ "grad_norm": 54.66056823730469,
273
+ "learning_rate": 1.7724444444444445e-05,
274
+ "loss": 4.7111,
275
+ "step": 3800
276
+ },
277
+ {
278
+ "epoch": 0.208,
279
+ "grad_norm": 55.63251495361328,
280
+ "learning_rate": 1.7607111111111112e-05,
281
+ "loss": 4.6759,
282
+ "step": 3900
283
+ },
284
+ {
285
+ "epoch": 0.21333333333333335,
286
+ "grad_norm": 78.46200561523438,
287
+ "learning_rate": 1.7488592592592594e-05,
288
+ "loss": 4.7733,
289
+ "step": 4000
290
+ },
291
+ {
292
+ "epoch": 0.21866666666666668,
293
+ "grad_norm": 67.47509765625,
294
+ "learning_rate": 1.7370074074074075e-05,
295
+ "loss": 4.7041,
296
+ "step": 4100
297
+ },
298
+ {
299
+ "epoch": 0.224,
300
+ "grad_norm": 69.53897094726562,
301
+ "learning_rate": 1.7251555555555557e-05,
302
+ "loss": 4.7898,
303
+ "step": 4200
304
+ },
305
+ {
306
+ "epoch": 0.22933333333333333,
307
+ "grad_norm": 103.5851821899414,
308
+ "learning_rate": 1.713303703703704e-05,
309
+ "loss": 4.8974,
310
+ "step": 4300
311
+ },
312
+ {
313
+ "epoch": 0.23466666666666666,
314
+ "grad_norm": 214.16416931152344,
315
+ "learning_rate": 1.701451851851852e-05,
316
+ "loss": 4.4939,
317
+ "step": 4400
318
+ },
319
+ {
320
+ "epoch": 0.24,
321
+ "grad_norm": 53.11494445800781,
322
+ "learning_rate": 1.6896000000000002e-05,
323
+ "loss": 4.4107,
324
+ "step": 4500
325
+ },
326
+ {
327
+ "epoch": 0.24533333333333332,
328
+ "grad_norm": 69.9258041381836,
329
+ "learning_rate": 1.6777481481481484e-05,
330
+ "loss": 4.4831,
331
+ "step": 4600
332
+ },
333
+ {
334
+ "epoch": 0.25066666666666665,
335
+ "grad_norm": 98.29943084716797,
336
+ "learning_rate": 1.6658962962962962e-05,
337
+ "loss": 4.4571,
338
+ "step": 4700
339
+ },
340
+ {
341
+ "epoch": 0.256,
342
+ "grad_norm": 141.04574584960938,
343
+ "learning_rate": 1.6540444444444444e-05,
344
+ "loss": 4.1461,
345
+ "step": 4800
346
+ },
347
+ {
348
+ "epoch": 0.2613333333333333,
349
+ "grad_norm": 81.44438171386719,
350
+ "learning_rate": 1.642192592592593e-05,
351
+ "loss": 4.5198,
352
+ "step": 4900
353
+ },
354
+ {
355
+ "epoch": 0.26666666666666666,
356
+ "grad_norm": 64.71192169189453,
357
+ "learning_rate": 1.6303407407407408e-05,
358
+ "loss": 4.4998,
359
+ "step": 5000
360
+ },
361
+ {
362
+ "epoch": 0.272,
363
+ "grad_norm": 56.899715423583984,
364
+ "learning_rate": 1.618488888888889e-05,
365
+ "loss": 4.2135,
366
+ "step": 5100
367
+ },
368
+ {
369
+ "epoch": 0.2773333333333333,
370
+ "grad_norm": 62.43917465209961,
371
+ "learning_rate": 1.606637037037037e-05,
372
+ "loss": 4.441,
373
+ "step": 5200
374
+ },
375
+ {
376
+ "epoch": 0.2826666666666667,
377
+ "grad_norm": 66.38310241699219,
378
+ "learning_rate": 1.5947851851851853e-05,
379
+ "loss": 4.2669,
380
+ "step": 5300
381
+ },
382
+ {
383
+ "epoch": 0.288,
384
+ "grad_norm": 269.8346252441406,
385
+ "learning_rate": 1.5829333333333334e-05,
386
+ "loss": 4.0964,
387
+ "step": 5400
388
+ },
389
+ {
390
+ "epoch": 0.29333333333333333,
391
+ "grad_norm": 65.3775405883789,
392
+ "learning_rate": 1.5710814814814816e-05,
393
+ "loss": 4.2048,
394
+ "step": 5500
395
+ },
396
+ {
397
+ "epoch": 0.2986666666666667,
398
+ "grad_norm": 72.42823791503906,
399
+ "learning_rate": 1.5592296296296298e-05,
400
+ "loss": 4.2123,
401
+ "step": 5600
402
+ },
403
+ {
404
+ "epoch": 0.304,
405
+ "grad_norm": 110.38677215576172,
406
+ "learning_rate": 1.547377777777778e-05,
407
+ "loss": 4.3391,
408
+ "step": 5700
409
+ },
410
+ {
411
+ "epoch": 0.30933333333333335,
412
+ "grad_norm": 74.9642105102539,
413
+ "learning_rate": 1.535525925925926e-05,
414
+ "loss": 4.3366,
415
+ "step": 5800
416
+ },
417
+ {
418
+ "epoch": 0.31466666666666665,
419
+ "grad_norm": 157.83856201171875,
420
+ "learning_rate": 1.5236740740740743e-05,
421
+ "loss": 4.1775,
422
+ "step": 5900
423
+ },
424
+ {
425
+ "epoch": 0.32,
426
+ "grad_norm": 86.05279541015625,
427
+ "learning_rate": 1.5118222222222223e-05,
428
+ "loss": 3.9954,
429
+ "step": 6000
430
+ },
431
+ {
432
+ "epoch": 0.3253333333333333,
433
+ "grad_norm": 191.12464904785156,
434
+ "learning_rate": 1.4999703703703705e-05,
435
+ "loss": 4.141,
436
+ "step": 6100
437
+ },
438
+ {
439
+ "epoch": 0.33066666666666666,
440
+ "grad_norm": 77.75936889648438,
441
+ "learning_rate": 1.4881185185185187e-05,
442
+ "loss": 4.09,
443
+ "step": 6200
444
+ },
445
+ {
446
+ "epoch": 0.336,
447
+ "grad_norm": 78.64347839355469,
448
+ "learning_rate": 1.4762666666666667e-05,
449
+ "loss": 3.9517,
450
+ "step": 6300
451
+ },
452
+ {
453
+ "epoch": 0.3413333333333333,
454
+ "grad_norm": 90.5103988647461,
455
+ "learning_rate": 1.4645333333333334e-05,
456
+ "loss": 3.9844,
457
+ "step": 6400
458
+ },
459
+ {
460
+ "epoch": 0.3466666666666667,
461
+ "grad_norm": 79.83901977539062,
462
+ "learning_rate": 1.4526814814814815e-05,
463
+ "loss": 3.8902,
464
+ "step": 6500
465
+ },
466
+ {
467
+ "epoch": 0.352,
468
+ "grad_norm": 87.23860931396484,
469
+ "learning_rate": 1.4408296296296299e-05,
470
+ "loss": 3.571,
471
+ "step": 6600
472
+ },
473
+ {
474
+ "epoch": 0.35733333333333334,
475
+ "grad_norm": 64.76517486572266,
476
+ "learning_rate": 1.4289777777777777e-05,
477
+ "loss": 3.7686,
478
+ "step": 6700
479
+ },
480
+ {
481
+ "epoch": 0.3626666666666667,
482
+ "grad_norm": 86.63563537597656,
483
+ "learning_rate": 1.417125925925926e-05,
484
+ "loss": 3.7766,
485
+ "step": 6800
486
+ },
487
+ {
488
+ "epoch": 0.368,
489
+ "grad_norm": 147.21160888671875,
490
+ "learning_rate": 1.4052740740740742e-05,
491
+ "loss": 4.0305,
492
+ "step": 6900
493
+ },
494
+ {
495
+ "epoch": 0.37333333333333335,
496
+ "grad_norm": 86.2465591430664,
497
+ "learning_rate": 1.3934222222222222e-05,
498
+ "loss": 4.2835,
499
+ "step": 7000
500
+ },
501
+ {
502
+ "epoch": 0.37866666666666665,
503
+ "grad_norm": 112.91142272949219,
504
+ "learning_rate": 1.3815703703703704e-05,
505
+ "loss": 3.8102,
506
+ "step": 7100
507
+ },
508
+ {
509
+ "epoch": 0.384,
510
+ "grad_norm": 193.4211883544922,
511
+ "learning_rate": 1.3698370370370371e-05,
512
+ "loss": 3.5178,
513
+ "step": 7200
514
+ },
515
+ {
516
+ "epoch": 0.3893333333333333,
517
+ "grad_norm": 87.25949096679688,
518
+ "learning_rate": 1.3579851851851853e-05,
519
+ "loss": 3.8828,
520
+ "step": 7300
521
+ },
522
+ {
523
+ "epoch": 0.39466666666666667,
524
+ "grad_norm": 95.35265350341797,
525
+ "learning_rate": 1.3461333333333334e-05,
526
+ "loss": 3.9125,
527
+ "step": 7400
528
+ },
529
+ {
530
+ "epoch": 0.4,
531
+ "grad_norm": 92.84791564941406,
532
+ "learning_rate": 1.3342814814814814e-05,
533
+ "loss": 3.8578,
534
+ "step": 7500
535
+ },
536
+ {
537
+ "epoch": 0.4053333333333333,
538
+ "grad_norm": 53.305694580078125,
539
+ "learning_rate": 1.3224296296296298e-05,
540
+ "loss": 3.7391,
541
+ "step": 7600
542
+ },
543
+ {
544
+ "epoch": 0.4106666666666667,
545
+ "grad_norm": 83.85381317138672,
546
+ "learning_rate": 1.310577777777778e-05,
547
+ "loss": 3.7178,
548
+ "step": 7700
549
+ },
550
+ {
551
+ "epoch": 0.416,
552
+ "grad_norm": 191.92666625976562,
553
+ "learning_rate": 1.298725925925926e-05,
554
+ "loss": 3.6572,
555
+ "step": 7800
556
+ },
557
+ {
558
+ "epoch": 0.42133333333333334,
559
+ "grad_norm": 152.61099243164062,
560
+ "learning_rate": 1.2868740740740741e-05,
561
+ "loss": 3.835,
562
+ "step": 7900
563
+ },
564
+ {
565
+ "epoch": 0.4266666666666667,
566
+ "grad_norm": 111.54241180419922,
567
+ "learning_rate": 1.2750222222222223e-05,
568
+ "loss": 3.4354,
569
+ "step": 8000
570
+ },
571
+ {
572
+ "epoch": 0.432,
573
+ "grad_norm": 54.150936126708984,
574
+ "learning_rate": 1.2631703703703703e-05,
575
+ "loss": 3.6725,
576
+ "step": 8100
577
+ },
578
+ {
579
+ "epoch": 0.43733333333333335,
580
+ "grad_norm": 118.56819915771484,
581
+ "learning_rate": 1.2513185185185187e-05,
582
+ "loss": 3.2932,
583
+ "step": 8200
584
+ },
585
+ {
586
+ "epoch": 0.44266666666666665,
587
+ "grad_norm": 94.42810821533203,
588
+ "learning_rate": 1.2394666666666668e-05,
589
+ "loss": 3.7056,
590
+ "step": 8300
591
+ },
592
+ {
593
+ "epoch": 0.448,
594
+ "grad_norm": 98.53581237792969,
595
+ "learning_rate": 1.2276148148148148e-05,
596
+ "loss": 3.9801,
597
+ "step": 8400
598
+ },
599
+ {
600
+ "epoch": 0.4533333333333333,
601
+ "grad_norm": 80.71143341064453,
602
+ "learning_rate": 1.215762962962963e-05,
603
+ "loss": 3.7294,
604
+ "step": 8500
605
+ },
606
+ {
607
+ "epoch": 0.45866666666666667,
608
+ "grad_norm": 113.76362609863281,
609
+ "learning_rate": 1.2039111111111112e-05,
610
+ "loss": 3.6412,
611
+ "step": 8600
612
+ },
613
+ {
614
+ "epoch": 0.464,
615
+ "grad_norm": 56.0068473815918,
616
+ "learning_rate": 1.1920592592592592e-05,
617
+ "loss": 3.4301,
618
+ "step": 8700
619
+ },
620
+ {
621
+ "epoch": 0.4693333333333333,
622
+ "grad_norm": 118.73760223388672,
623
+ "learning_rate": 1.1802074074074075e-05,
624
+ "loss": 3.4932,
625
+ "step": 8800
626
+ },
627
+ {
628
+ "epoch": 0.4746666666666667,
629
+ "grad_norm": 110.51318359375,
630
+ "learning_rate": 1.1683555555555557e-05,
631
+ "loss": 3.1855,
632
+ "step": 8900
633
+ },
634
+ {
635
+ "epoch": 0.48,
636
+ "grad_norm": 165.21546936035156,
637
+ "learning_rate": 1.1565037037037039e-05,
638
+ "loss": 3.4505,
639
+ "step": 9000
640
+ },
641
+ {
642
+ "epoch": 0.48533333333333334,
643
+ "grad_norm": 72.65802764892578,
644
+ "learning_rate": 1.1446518518518519e-05,
645
+ "loss": 3.4431,
646
+ "step": 9100
647
+ },
648
+ {
649
+ "epoch": 0.49066666666666664,
650
+ "grad_norm": 99.20442199707031,
651
+ "learning_rate": 1.1328e-05,
652
+ "loss": 3.0782,
653
+ "step": 9200
654
+ },
655
+ {
656
+ "epoch": 0.496,
657
+ "grad_norm": 60.40226364135742,
658
+ "learning_rate": 1.1209481481481484e-05,
659
+ "loss": 3.3604,
660
+ "step": 9300
661
+ },
662
+ {
663
+ "epoch": 0.5013333333333333,
664
+ "grad_norm": 61.19272232055664,
665
+ "learning_rate": 1.1090962962962964e-05,
666
+ "loss": 3.3833,
667
+ "step": 9400
668
+ },
669
+ {
670
+ "epoch": 0.5066666666666667,
671
+ "grad_norm": 35.161251068115234,
672
+ "learning_rate": 1.0972444444444446e-05,
673
+ "loss": 3.2887,
674
+ "step": 9500
675
+ },
676
+ {
677
+ "epoch": 0.512,
678
+ "grad_norm": 114.50215148925781,
679
+ "learning_rate": 1.0853925925925928e-05,
680
+ "loss": 3.1361,
681
+ "step": 9600
682
+ },
683
+ {
684
+ "epoch": 0.5173333333333333,
685
+ "grad_norm": 97.2239761352539,
686
+ "learning_rate": 1.0735407407407408e-05,
687
+ "loss": 3.7856,
688
+ "step": 9700
689
+ },
690
+ {
691
+ "epoch": 0.5226666666666666,
692
+ "grad_norm": 129.9647979736328,
693
+ "learning_rate": 1.061688888888889e-05,
694
+ "loss": 3.4907,
695
+ "step": 9800
696
+ },
697
+ {
698
+ "epoch": 0.528,
699
+ "grad_norm": 97.21747589111328,
700
+ "learning_rate": 1.0498370370370373e-05,
701
+ "loss": 3.4553,
702
+ "step": 9900
703
+ },
704
+ {
705
+ "epoch": 0.5333333333333333,
706
+ "grad_norm": 66.7669448852539,
707
+ "learning_rate": 1.0379851851851853e-05,
708
+ "loss": 3.2604,
709
+ "step": 10000
710
+ },
711
+ {
712
+ "epoch": 0.5386666666666666,
713
+ "grad_norm": 118.46977996826172,
714
+ "learning_rate": 1.0261333333333335e-05,
715
+ "loss": 3.4325,
716
+ "step": 10100
717
+ },
718
+ {
719
+ "epoch": 0.544,
720
+ "grad_norm": 151.7686767578125,
721
+ "learning_rate": 1.0142814814814816e-05,
722
+ "loss": 3.319,
723
+ "step": 10200
724
+ },
725
+ {
726
+ "epoch": 0.5493333333333333,
727
+ "grad_norm": 277.033447265625,
728
+ "learning_rate": 1.0024296296296296e-05,
729
+ "loss": 3.3623,
730
+ "step": 10300
731
+ },
732
+ {
733
+ "epoch": 0.5546666666666666,
734
+ "grad_norm": 116.09725952148438,
735
+ "learning_rate": 9.905777777777778e-06,
736
+ "loss": 3.4278,
737
+ "step": 10400
738
+ },
739
+ {
740
+ "epoch": 0.56,
741
+ "grad_norm": 124.16327667236328,
742
+ "learning_rate": 9.78725925925926e-06,
743
+ "loss": 3.0365,
744
+ "step": 10500
745
+ },
746
+ {
747
+ "epoch": 0.5653333333333334,
748
+ "grad_norm": 32.879947662353516,
749
+ "learning_rate": 9.668740740740742e-06,
750
+ "loss": 3.1647,
751
+ "step": 10600
752
+ },
753
+ {
754
+ "epoch": 0.5706666666666667,
755
+ "grad_norm": 106.03438568115234,
756
+ "learning_rate": 9.550222222222223e-06,
757
+ "loss": 3.387,
758
+ "step": 10700
759
+ },
760
+ {
761
+ "epoch": 0.576,
762
+ "grad_norm": 81.7701187133789,
763
+ "learning_rate": 9.431703703703703e-06,
764
+ "loss": 3.0888,
765
+ "step": 10800
766
+ },
767
+ {
768
+ "epoch": 0.5813333333333334,
769
+ "grad_norm": 92.54151153564453,
770
+ "learning_rate": 9.313185185185187e-06,
771
+ "loss": 3.2073,
772
+ "step": 10900
773
+ },
774
+ {
775
+ "epoch": 0.5866666666666667,
776
+ "grad_norm": 89.57464599609375,
777
+ "learning_rate": 9.194666666666667e-06,
778
+ "loss": 3.0386,
779
+ "step": 11000
780
+ },
781
+ {
782
+ "epoch": 0.592,
783
+ "grad_norm": 170.9632568359375,
784
+ "learning_rate": 9.076148148148149e-06,
785
+ "loss": 3.222,
786
+ "step": 11100
787
+ },
788
+ {
789
+ "epoch": 0.5973333333333334,
790
+ "grad_norm": 38.04743194580078,
791
+ "learning_rate": 8.95762962962963e-06,
792
+ "loss": 3.1902,
793
+ "step": 11200
794
+ },
795
+ {
796
+ "epoch": 0.6026666666666667,
797
+ "grad_norm": 150.6612548828125,
798
+ "learning_rate": 8.839111111111112e-06,
799
+ "loss": 3.2242,
800
+ "step": 11300
801
+ },
802
+ {
803
+ "epoch": 0.608,
804
+ "grad_norm": 80.37187957763672,
805
+ "learning_rate": 8.720592592592594e-06,
806
+ "loss": 2.9589,
807
+ "step": 11400
808
+ },
809
+ {
810
+ "epoch": 0.6133333333333333,
811
+ "grad_norm": 97.09183502197266,
812
+ "learning_rate": 8.60325925925926e-06,
813
+ "loss": 2.831,
814
+ "step": 11500
815
+ },
816
+ {
817
+ "epoch": 0.6186666666666667,
818
+ "grad_norm": 161.1728973388672,
819
+ "learning_rate": 8.48474074074074e-06,
820
+ "loss": 3.0551,
821
+ "step": 11600
822
+ },
823
+ {
824
+ "epoch": 0.624,
825
+ "grad_norm": 123.0923080444336,
826
+ "learning_rate": 8.366222222222224e-06,
827
+ "loss": 2.8091,
828
+ "step": 11700
829
+ },
830
+ {
831
+ "epoch": 0.6293333333333333,
832
+ "grad_norm": 122.80669403076172,
833
+ "learning_rate": 8.247703703703704e-06,
834
+ "loss": 3.2146,
835
+ "step": 11800
836
+ },
837
+ {
838
+ "epoch": 0.6346666666666667,
839
+ "grad_norm": 84.94342041015625,
840
+ "learning_rate": 8.129185185185186e-06,
841
+ "loss": 3.1964,
842
+ "step": 11900
843
+ },
844
+ {
845
+ "epoch": 0.64,
846
+ "grad_norm": 142.91336059570312,
847
+ "learning_rate": 8.010666666666668e-06,
848
+ "loss": 2.9525,
849
+ "step": 12000
850
+ },
851
+ {
852
+ "epoch": 0.6453333333333333,
853
+ "grad_norm": 92.86615753173828,
854
+ "learning_rate": 7.89214814814815e-06,
855
+ "loss": 3.2989,
856
+ "step": 12100
857
+ },
858
+ {
859
+ "epoch": 0.6506666666666666,
860
+ "grad_norm": 105.99359893798828,
861
+ "learning_rate": 7.77362962962963e-06,
862
+ "loss": 2.9683,
863
+ "step": 12200
864
+ },
865
+ {
866
+ "epoch": 0.656,
867
+ "grad_norm": 116.56002044677734,
868
+ "learning_rate": 7.655111111111113e-06,
869
+ "loss": 2.9026,
870
+ "step": 12300
871
+ },
872
+ {
873
+ "epoch": 0.6613333333333333,
874
+ "grad_norm": 102.49303436279297,
875
+ "learning_rate": 7.536592592592593e-06,
876
+ "loss": 3.1533,
877
+ "step": 12400
878
+ },
879
+ {
880
+ "epoch": 0.6666666666666666,
881
+ "grad_norm": 105.65465545654297,
882
+ "learning_rate": 7.418074074074074e-06,
883
+ "loss": 2.7657,
884
+ "step": 12500
885
+ },
886
+ {
887
+ "epoch": 0.672,
888
+ "grad_norm": 75.12621307373047,
889
+ "learning_rate": 7.299555555555556e-06,
890
+ "loss": 3.09,
891
+ "step": 12600
892
+ },
893
+ {
894
+ "epoch": 0.6773333333333333,
895
+ "grad_norm": 79.20515441894531,
896
+ "learning_rate": 7.181037037037037e-06,
897
+ "loss": 3.1612,
898
+ "step": 12700
899
+ },
900
+ {
901
+ "epoch": 0.6826666666666666,
902
+ "grad_norm": 42.84831237792969,
903
+ "learning_rate": 7.062518518518518e-06,
904
+ "loss": 2.9614,
905
+ "step": 12800
906
+ },
907
+ {
908
+ "epoch": 0.688,
909
+ "grad_norm": 109.40416717529297,
910
+ "learning_rate": 6.944000000000001e-06,
911
+ "loss": 3.0533,
912
+ "step": 12900
913
+ },
914
+ {
915
+ "epoch": 0.6933333333333334,
916
+ "grad_norm": 119.65579986572266,
917
+ "learning_rate": 6.825481481481482e-06,
918
+ "loss": 2.7601,
919
+ "step": 13000
920
+ },
921
+ {
922
+ "epoch": 0.6986666666666667,
923
+ "grad_norm": 55.7857551574707,
924
+ "learning_rate": 6.706962962962964e-06,
925
+ "loss": 2.9242,
926
+ "step": 13100
927
+ },
928
+ {
929
+ "epoch": 0.704,
930
+ "grad_norm": 416.87347412109375,
931
+ "learning_rate": 6.588444444444445e-06,
932
+ "loss": 2.5517,
933
+ "step": 13200
934
+ },
935
+ {
936
+ "epoch": 0.7093333333333334,
937
+ "grad_norm": 104.21924591064453,
938
+ "learning_rate": 6.469925925925926e-06,
939
+ "loss": 2.9859,
940
+ "step": 13300
941
+ },
942
+ {
943
+ "epoch": 0.7146666666666667,
944
+ "grad_norm": 95.74305725097656,
945
+ "learning_rate": 6.351407407407409e-06,
946
+ "loss": 2.7317,
947
+ "step": 13400
948
+ },
949
+ {
950
+ "epoch": 0.72,
951
+ "grad_norm": 97.16332244873047,
952
+ "learning_rate": 6.2328888888888895e-06,
953
+ "loss": 2.7578,
954
+ "step": 13500
955
+ },
956
+ {
957
+ "epoch": 0.7253333333333334,
958
+ "grad_norm": 85.52286529541016,
959
+ "learning_rate": 6.11437037037037e-06,
960
+ "loss": 3.1413,
961
+ "step": 13600
962
+ },
963
+ {
964
+ "epoch": 0.7306666666666667,
965
+ "grad_norm": 159.7246551513672,
966
+ "learning_rate": 5.995851851851853e-06,
967
+ "loss": 3.0612,
968
+ "step": 13700
969
+ },
970
+ {
971
+ "epoch": 0.736,
972
+ "grad_norm": 141.78903198242188,
973
+ "learning_rate": 5.877333333333334e-06,
974
+ "loss": 2.8295,
975
+ "step": 13800
976
+ },
977
+ {
978
+ "epoch": 0.7413333333333333,
979
+ "grad_norm": 116.21475219726562,
980
+ "learning_rate": 5.758814814814815e-06,
981
+ "loss": 2.6263,
982
+ "step": 13900
983
+ },
984
+ {
985
+ "epoch": 0.7466666666666667,
986
+ "grad_norm": 91.57818603515625,
987
+ "learning_rate": 5.640296296296297e-06,
988
+ "loss": 2.7181,
989
+ "step": 14000
990
+ },
991
+ {
992
+ "epoch": 0.752,
993
+ "grad_norm": 68.21562194824219,
994
+ "learning_rate": 5.521777777777778e-06,
995
+ "loss": 2.8643,
996
+ "step": 14100
997
+ },
998
+ {
999
+ "epoch": 0.7573333333333333,
1000
+ "grad_norm": 169.53868103027344,
1001
+ "learning_rate": 5.403259259259259e-06,
1002
+ "loss": 2.903,
1003
+ "step": 14200
1004
+ },
1005
+ {
1006
+ "epoch": 0.7626666666666667,
1007
+ "grad_norm": 218.90374755859375,
1008
+ "learning_rate": 5.284740740740742e-06,
1009
+ "loss": 2.7787,
1010
+ "step": 14300
1011
+ },
1012
+ {
1013
+ "epoch": 0.768,
1014
+ "grad_norm": 90.267822265625,
1015
+ "learning_rate": 5.166222222222223e-06,
1016
+ "loss": 2.991,
1017
+ "step": 14400
1018
+ },
1019
+ {
1020
+ "epoch": 0.7733333333333333,
1021
+ "grad_norm": 140.58152770996094,
1022
+ "learning_rate": 5.047703703703704e-06,
1023
+ "loss": 2.8306,
1024
+ "step": 14500
1025
+ }
1026
+ ],
1027
+ "logging_steps": 100,
1028
+ "max_steps": 18750,
1029
+ "num_input_tokens_seen": 0,
1030
+ "num_train_epochs": 1,
1031
+ "save_steps": 500,
1032
+ "stateful_callbacks": {
1033
+ "TrainerControl": {
1034
+ "args": {
1035
+ "should_epoch_stop": false,
1036
+ "should_evaluate": false,
1037
+ "should_log": false,
1038
+ "should_save": true,
1039
+ "should_training_stop": false
1040
+ },
1041
+ "attributes": {}
1042
+ }
1043
+ },
1044
+ "total_flos": 0.0,
1045
+ "train_batch_size": 128,
1046
+ "trial_name": null,
1047
+ "trial_params": null
1048
+ }
checkpoint-14500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:559c2e10ae7e3eb92c5fe0ec0855e1823bed2527232b2a6421c1e7e5dcf4dd39
3
+ size 5496
checkpoint-14500/vocab.txt ADDED
The diff for this file is too large to render. See raw diff