This tiny model is for debugging. It is randomly initialized with the config adapted from openbmb/MiniCPM4-8B.
Example usage:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "yujiepan/minicpm4-tiny-random"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
# User can directly use the chat interface
# responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7)
# print(responds)
# User can also use the generate interface
messages = [
{"role": "user", "content": "Write an article about Artificial Intelligence."},
]
prompt_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)
model_outputs = model.generate(
**model_inputs,
max_new_tokens=32,
top_p=0.7,
temperature=0.7
)
output_token_ids = [
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs['input_ids']))
]
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
Codes to create this repo:
import json
from pathlib import Path
import torch
import accelerate
from huggingface_hub import hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
set_seed,
)
source_model_id = "openbmb/MiniCPM4-8B"
save_folder = "/tmp/yujiepan/minicpm4-tiny-random"
processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json["hidden_size"] = 64
config_json['intermediate_size'] = 128
config_json['num_attention_heads'] = 2
config_json['num_key_value_heads'] = 1
config_json['dim_model_base'] = 32
config_json['num_hidden_layers'] = 2
config_json['tie_word_embeddings'] = True
for k, v in config_json['auto_map'].items():
config_json['auto_map'][k] = f'{source_model_id}--{v}'
automap = config_json['auto_map']
factor = config_json['rope_scaling']['long_factor']
config_json['rope_scaling']['long_factor'] = factor[:16]
config_json['rope_scaling']['short_factor'] = factor[:16]
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.2)
print(name, p.shape)
pass
model.save_pretrained(save_folder)
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
config_json = json.load(f)
config_json['auto_map'] = automap
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
for python_file in Path(save_folder).glob('*.py'):
python_file.unlink()
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support