This tiny model is for debugging. It is randomly initialized with the config adapted from openbmb/MiniCPM4-8B.

Example usage:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "yujiepan/minicpm4-tiny-random"

device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)

# User can directly use the chat interface
# responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7)
# print(responds)

# User can also use the generate interface
messages = [
    {"role": "user", "content": "Write an article about Artificial Intelligence."},
]
prompt_text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)

model_outputs = model.generate(
    **model_inputs,
    max_new_tokens=32,
    top_p=0.7,
    temperature=0.7
)
output_token_ids = [
    model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs['input_ids']))
]

responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)

Codes to create this repo:

import json
from pathlib import Path

import torch

import accelerate
from huggingface_hub import hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    set_seed,
)

source_model_id = "openbmb/MiniCPM4-8B"
save_folder = "/tmp/yujiepan/minicpm4-tiny-random"

processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)
config_json["hidden_size"] = 64
config_json['intermediate_size'] = 128
config_json['num_attention_heads'] = 2
config_json['num_key_value_heads'] = 1
config_json['dim_model_base'] = 32
config_json['num_hidden_layers'] = 2
config_json['tie_word_embeddings'] = True
for k, v in config_json['auto_map'].items():
    config_json['auto_map'][k] = f'{source_model_id}--{v}'
automap = config_json['auto_map']
factor = config_json['rope_scaling']['long_factor']
config_json['rope_scaling']['long_factor'] = factor[:16]
config_json['rope_scaling']['short_factor'] = factor[:16]
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.2)
        print(name, p.shape)
        pass
model.save_pretrained(save_folder)
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
    config_json = json.load(f)
    config_json['auto_map'] = automap
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)
for python_file in Path(save_folder).glob('*.py'):
    python_file.unlink()
Downloads last month
7
Safetensors
Model size
4.77M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support