SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the parquet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- parquet
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("yyzheng00/snomed_triplet_800k")
# Run inference
sentences = [
'|Adverse reaction caused by drug| : { |Causative agent| = |Digestant| }',
'Adverse reaction caused by digestant (disorder)',
'Ureteroscopic division of stricture of ureter (procedure)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
snomed_triplet_800k_3_4_3-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9983 |
Triplet
- Dataset:
snomed_triplet_800k_3_4_3-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9984 |
Training Details
Training Dataset
parquet
- Dataset: parquet
- Size: 800,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 19 tokens
- mean: 59.07 tokens
- max: 256 tokens
- min: 4 tokens
- mean: 12.65 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 12.57 tokens
- max: 51 tokens
- Samples:
anchor positive negative Product containing lercanidipine + Product containing trovafloxacin + Product containing carboxylic acid and/or carboxylic acid derivative + - Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.2 }
Evaluation Dataset
parquet
- Dataset: parquet
- Size: 800,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 19 tokens
- mean: 58.9 tokens
- max: 253 tokens
- min: 4 tokens
- mean: 12.41 tokens
- max: 49 tokens
- min: 3 tokens
- mean: 12.43 tokens
- max: 38 tokens
- Samples:
anchor positive negative Hodgkin lymphoma, nodular lymphocyte predominance + Product containing bexarotene + Disease caused by Haemogregarinidae : { - Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.COSINE", "triplet_margin": 0.2 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | snomed_triplet_800k_3_4_3-dev_cosine_accuracy |
---|---|---|---|---|
0.0033 | 100 | 0.0207 | 0.0115 | 0.9820 |
0.0067 | 200 | 0.0121 | 0.0093 | 0.9852 |
0.01 | 300 | 0.013 | 0.0082 | 0.9867 |
0.0133 | 400 | 0.0086 | 0.0076 | 0.9879 |
0.0167 | 500 | 0.0078 | 0.0072 | 0.9886 |
0.02 | 600 | 0.0084 | 0.0068 | 0.9893 |
0.0233 | 700 | 0.0066 | 0.0064 | 0.9901 |
0.0267 | 800 | 0.0077 | 0.0059 | 0.9905 |
0.03 | 900 | 0.0061 | 0.0059 | 0.9903 |
0.0333 | 1000 | 0.0069 | 0.0059 | 0.9906 |
0.0367 | 1100 | 0.0063 | 0.0055 | 0.9911 |
0.04 | 1200 | 0.0054 | 0.0055 | 0.9913 |
0.0433 | 1300 | 0.0062 | 0.0054 | 0.9917 |
0.0467 | 1400 | 0.0055 | 0.0053 | 0.9915 |
0.05 | 1500 | 0.0064 | 0.0051 | 0.9926 |
0.0533 | 1600 | 0.0062 | 0.0050 | 0.9928 |
0.0567 | 1700 | 0.0055 | 0.0047 | 0.9932 |
0.06 | 1800 | 0.0048 | 0.0052 | 0.9918 |
0.0633 | 1900 | 0.0056 | 0.0050 | 0.9929 |
0.0667 | 2000 | 0.006 | 0.0051 | 0.9926 |
0.07 | 2100 | 0.0061 | 0.0046 | 0.9932 |
0.0733 | 2200 | 0.0075 | 0.0045 | 0.9936 |
0.0767 | 2300 | 0.0055 | 0.0049 | 0.9923 |
0.08 | 2400 | 0.0043 | 0.0046 | 0.9935 |
0.0833 | 2500 | 0.006 | 0.0049 | 0.9923 |
0.0867 | 2600 | 0.0052 | 0.0048 | 0.9928 |
0.09 | 2700 | 0.006 | 0.0047 | 0.9927 |
0.0933 | 2800 | 0.0062 | 0.0042 | 0.9938 |
0.0967 | 2900 | 0.0056 | 0.0043 | 0.9942 |
0.1 | 3000 | 0.0049 | 0.0046 | 0.9929 |
0.1033 | 3100 | 0.0037 | 0.0043 | 0.9935 |
0.1067 | 3200 | 0.0061 | 0.0045 | 0.9929 |
0.11 | 3300 | 0.0045 | 0.0043 | 0.9934 |
0.1133 | 3400 | 0.0047 | 0.0047 | 0.9925 |
0.1167 | 3500 | 0.0068 | 0.0043 | 0.9938 |
0.12 | 3600 | 0.0054 | 0.0041 | 0.9935 |
0.1233 | 3700 | 0.0047 | 0.0041 | 0.9935 |
0.1267 | 3800 | 0.0062 | 0.0041 | 0.9938 |
0.13 | 3900 | 0.0029 | 0.0043 | 0.9935 |
0.1333 | 4000 | 0.0045 | 0.0039 | 0.9939 |
0.1367 | 4100 | 0.0046 | 0.0039 | 0.9943 |
0.14 | 4200 | 0.0048 | 0.0046 | 0.9928 |
0.1433 | 4300 | 0.0045 | 0.0043 | 0.9940 |
0.1467 | 4400 | 0.0058 | 0.0043 | 0.9935 |
0.15 | 4500 | 0.0045 | 0.0043 | 0.9930 |
0.1533 | 4600 | 0.0046 | 0.0040 | 0.9940 |
0.1567 | 4700 | 0.0049 | 0.0039 | 0.9944 |
0.16 | 4800 | 0.0047 | 0.0039 | 0.9940 |
0.1633 | 4900 | 0.0053 | 0.0047 | 0.9938 |
0.1667 | 5000 | 0.0042 | 0.0041 | 0.9934 |
0.17 | 5100 | 0.004 | 0.0039 | 0.9939 |
0.1733 | 5200 | 0.0037 | 0.0036 | 0.9944 |
0.1767 | 5300 | 0.005 | 0.0037 | 0.9942 |
0.18 | 5400 | 0.005 | 0.0035 | 0.9947 |
0.1833 | 5500 | 0.0047 | 0.0037 | 0.9944 |
0.1867 | 5600 | 0.0047 | 0.0035 | 0.9947 |
0.19 | 5700 | 0.0046 | 0.0037 | 0.9942 |
0.1933 | 5800 | 0.005 | 0.0036 | 0.9944 |
0.1967 | 5900 | 0.0052 | 0.0037 | 0.9945 |
0.2 | 6000 | 0.0044 | 0.0035 | 0.9952 |
0.2033 | 6100 | 0.0043 | 0.0034 | 0.9952 |
0.2067 | 6200 | 0.0046 | 0.0035 | 0.9947 |
0.21 | 6300 | 0.0059 | 0.0034 | 0.9948 |
0.2133 | 6400 | 0.0051 | 0.0035 | 0.9948 |
0.2167 | 6500 | 0.0032 | 0.0032 | 0.9950 |
0.22 | 6600 | 0.0031 | 0.0032 | 0.9951 |
0.2233 | 6700 | 0.003 | 0.0033 | 0.9951 |
0.2267 | 6800 | 0.0048 | 0.0034 | 0.9950 |
0.23 | 6900 | 0.0028 | 0.0038 | 0.9940 |
0.2333 | 7000 | 0.0035 | 0.0032 | 0.9951 |
0.2367 | 7100 | 0.0032 | 0.0032 | 0.9956 |
0.24 | 7200 | 0.0039 | 0.0032 | 0.9952 |
0.2433 | 7300 | 0.0046 | 0.0032 | 0.9951 |
0.2467 | 7400 | 0.0042 | 0.0033 | 0.9949 |
0.25 | 7500 | 0.0041 | 0.0032 | 0.9955 |
0.2533 | 7600 | 0.0043 | 0.0032 | 0.9954 |
0.2567 | 7700 | 0.0054 | 0.0031 | 0.9957 |
0.26 | 7800 | 0.0037 | 0.0033 | 0.9952 |
0.2633 | 7900 | 0.0042 | 0.0035 | 0.9948 |
0.2667 | 8000 | 0.0038 | 0.0031 | 0.9956 |
0.27 | 8100 | 0.0036 | 0.0031 | 0.9954 |
0.2733 | 8200 | 0.0037 | 0.0031 | 0.9956 |
0.2767 | 8300 | 0.0043 | 0.0030 | 0.9952 |
0.28 | 8400 | 0.004 | 0.0030 | 0.9957 |
0.2833 | 8500 | 0.0024 | 0.0030 | 0.9955 |
0.2867 | 8600 | 0.0032 | 0.0028 | 0.9959 |
0.29 | 8700 | 0.0045 | 0.0029 | 0.9957 |
0.2933 | 8800 | 0.0038 | 0.0030 | 0.9955 |
0.2967 | 8900 | 0.0057 | 0.0027 | 0.9960 |
0.3 | 9000 | 0.0043 | 0.0029 | 0.9957 |
0.3033 | 9100 | 0.0041 | 0.0029 | 0.9960 |
0.3067 | 9200 | 0.0028 | 0.0027 | 0.9962 |
0.31 | 9300 | 0.0025 | 0.0026 | 0.9962 |
0.3133 | 9400 | 0.0031 | 0.0029 | 0.9956 |
0.3167 | 9500 | 0.0041 | 0.0033 | 0.9949 |
0.32 | 9600 | 0.003 | 0.0028 | 0.9962 |
0.3233 | 9700 | 0.0029 | 0.0028 | 0.9960 |
0.3267 | 9800 | 0.0029 | 0.0029 | 0.9957 |
0.33 | 9900 | 0.0027 | 0.0028 | 0.9960 |
0.3333 | 10000 | 0.0036 | 0.0028 | 0.9963 |
0.3367 | 10100 | 0.0039 | 0.0027 | 0.9962 |
0.34 | 10200 | 0.0038 | 0.0029 | 0.9958 |
0.3433 | 10300 | 0.0047 | 0.0026 | 0.9962 |
0.3467 | 10400 | 0.0045 | 0.0027 | 0.9962 |
0.35 | 10500 | 0.0023 | 0.0026 | 0.9962 |
0.3533 | 10600 | 0.0035 | 0.0027 | 0.9963 |
0.3567 | 10700 | 0.0028 | 0.0028 | 0.9960 |
0.36 | 10800 | 0.0025 | 0.0027 | 0.9963 |
0.3633 | 10900 | 0.0035 | 0.0029 | 0.9957 |
0.3667 | 11000 | 0.0028 | 0.0028 | 0.9962 |
0.37 | 11100 | 0.0045 | 0.0027 | 0.9962 |
0.3733 | 11200 | 0.0032 | 0.0026 | 0.9965 |
0.3767 | 11300 | 0.0035 | 0.0026 | 0.9962 |
0.38 | 11400 | 0.005 | 0.0025 | 0.9965 |
0.3833 | 11500 | 0.0025 | 0.0025 | 0.9965 |
0.3867 | 11600 | 0.0034 | 0.0026 | 0.9963 |
0.39 | 11700 | 0.0035 | 0.0026 | 0.9963 |
0.3933 | 11800 | 0.0024 | 0.0029 | 0.9956 |
0.3967 | 11900 | 0.0034 | 0.0025 | 0.9965 |
0.4 | 12000 | 0.0036 | 0.0024 | 0.9968 |
0.4033 | 12100 | 0.003 | 0.0025 | 0.9968 |
0.4067 | 12200 | 0.0029 | 0.0025 | 0.9964 |
0.41 | 12300 | 0.0036 | 0.0025 | 0.9965 |
0.4133 | 12400 | 0.0016 | 0.0024 | 0.9966 |
0.4167 | 12500 | 0.0029 | 0.0025 | 0.9965 |
0.42 | 12600 | 0.0037 | 0.0024 | 0.9969 |
0.4233 | 12700 | 0.0025 | 0.0023 | 0.9968 |
0.4267 | 12800 | 0.0039 | 0.0022 | 0.9972 |
0.43 | 12900 | 0.0024 | 0.0022 | 0.9972 |
0.4333 | 13000 | 0.0038 | 0.0023 | 0.9968 |
0.4367 | 13100 | 0.0034 | 0.0022 | 0.9969 |
0.44 | 13200 | 0.0024 | 0.0023 | 0.9967 |
0.4433 | 13300 | 0.0026 | 0.0025 | 0.9964 |
0.4467 | 13400 | 0.0028 | 0.0024 | 0.9966 |
0.45 | 13500 | 0.0036 | 0.0024 | 0.9965 |
0.4533 | 13600 | 0.0025 | 0.0024 | 0.9965 |
0.4567 | 13700 | 0.0035 | 0.0024 | 0.9967 |
0.46 | 13800 | 0.0018 | 0.0023 | 0.9966 |
0.4633 | 13900 | 0.0028 | 0.0023 | 0.9968 |
0.4667 | 14000 | 0.0033 | 0.0022 | 0.9970 |
0.47 | 14100 | 0.0018 | 0.0022 | 0.9970 |
0.4733 | 14200 | 0.003 | 0.0021 | 0.9971 |
0.4767 | 14300 | 0.0021 | 0.0021 | 0.9971 |
0.48 | 14400 | 0.0029 | 0.0021 | 0.9971 |
0.4833 | 14500 | 0.0027 | 0.0023 | 0.9969 |
0.4867 | 14600 | 0.0023 | 0.0021 | 0.9971 |
0.49 | 14700 | 0.0026 | 0.0021 | 0.9972 |
0.4933 | 14800 | 0.0019 | 0.0021 | 0.9969 |
0.4967 | 14900 | 0.0024 | 0.0022 | 0.9968 |
0.5 | 15000 | 0.0025 | 0.0021 | 0.9968 |
0.5033 | 15100 | 0.0026 | 0.0021 | 0.9970 |
0.5067 | 15200 | 0.0019 | 0.0022 | 0.997 |
0.51 | 15300 | 0.0029 | 0.0023 | 0.9968 |
0.5133 | 15400 | 0.0026 | 0.0021 | 0.9970 |
0.5167 | 15500 | 0.0027 | 0.0021 | 0.9969 |
0.52 | 15600 | 0.0022 | 0.0022 | 0.9971 |
0.5233 | 15700 | 0.0026 | 0.0020 | 0.9973 |
0.5267 | 15800 | 0.0026 | 0.0021 | 0.9973 |
0.53 | 15900 | 0.0022 | 0.0020 | 0.9974 |
0.5333 | 16000 | 0.0039 | 0.0020 | 0.9975 |
0.5367 | 16100 | 0.0017 | 0.0020 | 0.9975 |
0.54 | 16200 | 0.0022 | 0.0020 | 0.9975 |
0.5433 | 16300 | 0.002 | 0.0019 | 0.9974 |
0.5467 | 16400 | 0.0033 | 0.0019 | 0.9975 |
0.55 | 16500 | 0.0032 | 0.0019 | 0.9974 |
0.5533 | 16600 | 0.0019 | 0.0020 | 0.9975 |
0.5567 | 16700 | 0.0027 | 0.0019 | 0.9974 |
0.56 | 16800 | 0.0027 | 0.0019 | 0.9973 |
0.5633 | 16900 | 0.0023 | 0.0018 | 0.9976 |
0.5667 | 17000 | 0.002 | 0.0018 | 0.9976 |
0.57 | 17100 | 0.0024 | 0.0019 | 0.9975 |
0.5733 | 17200 | 0.0021 | 0.0020 | 0.9973 |
0.5767 | 17300 | 0.0038 | 0.0019 | 0.9973 |
0.58 | 17400 | 0.0018 | 0.0018 | 0.9975 |
0.5833 | 17500 | 0.0031 | 0.0018 | 0.9977 |
0.5867 | 17600 | 0.0021 | 0.0018 | 0.9976 |
0.59 | 17700 | 0.0023 | 0.0019 | 0.9974 |
0.5933 | 17800 | 0.0031 | 0.0018 | 0.9975 |
0.5967 | 17900 | 0.002 | 0.0019 | 0.9975 |
0.6 | 18000 | 0.002 | 0.0018 | 0.9975 |
0.6033 | 18100 | 0.003 | 0.0019 | 0.9976 |
0.6067 | 18200 | 0.0023 | 0.0018 | 0.9977 |
0.61 | 18300 | 0.0029 | 0.0019 | 0.9975 |
0.6133 | 18400 | 0.0023 | 0.0018 | 0.9977 |
0.6167 | 18500 | 0.0017 | 0.0018 | 0.9977 |
0.62 | 18600 | 0.0022 | 0.0018 | 0.9977 |
0.6233 | 18700 | 0.0023 | 0.0018 | 0.9977 |
0.6267 | 18800 | 0.0021 | 0.0017 | 0.9978 |
0.63 | 18900 | 0.002 | 0.0017 | 0.9978 |
0.6333 | 19000 | 0.0028 | 0.0018 | 0.9978 |
0.6367 | 19100 | 0.0024 | 0.0017 | 0.9978 |
0.64 | 19200 | 0.0029 | 0.0017 | 0.9977 |
0.6433 | 19300 | 0.003 | 0.0017 | 0.9979 |
0.6467 | 19400 | 0.0027 | 0.0017 | 0.9978 |
0.65 | 19500 | 0.0032 | 0.0017 | 0.9978 |
0.6533 | 19600 | 0.0025 | 0.0017 | 0.9978 |
0.6567 | 19700 | 0.002 | 0.0017 | 0.9978 |
0.66 | 19800 | 0.0018 | 0.0017 | 0.9978 |
0.6633 | 19900 | 0.002 | 0.0018 | 0.9975 |
0.6667 | 20000 | 0.0029 | 0.0017 | 0.9978 |
0.67 | 20100 | 0.0012 | 0.0017 | 0.9978 |
0.6733 | 20200 | 0.0024 | 0.0016 | 0.9980 |
0.6767 | 20300 | 0.0027 | 0.0016 | 0.9980 |
0.68 | 20400 | 0.0023 | 0.0016 | 0.9980 |
0.6833 | 20500 | 0.0025 | 0.0016 | 0.9981 |
0.6867 | 20600 | 0.0018 | 0.0016 | 0.9981 |
0.69 | 20700 | 0.0015 | 0.0016 | 0.9981 |
0.6933 | 20800 | 0.0017 | 0.0015 | 0.9980 |
0.6967 | 20900 | 0.0027 | 0.0015 | 0.9981 |
0.7 | 21000 | 0.0016 | 0.0015 | 0.9982 |
0.7033 | 21100 | 0.002 | 0.0015 | 0.9983 |
0.7067 | 21200 | 0.002 | 0.0015 | 0.9983 |
0.71 | 21300 | 0.0022 | 0.0015 | 0.9984 |
0.7133 | 21400 | 0.0019 | 0.0015 | 0.9983 |
0.7167 | 21500 | 0.0025 | 0.0015 | 0.9981 |
0.72 | 21600 | 0.0025 | 0.0015 | 0.9981 |
0.7233 | 21700 | 0.0021 | 0.0015 | 0.9982 |
0.7267 | 21800 | 0.002 | 0.0015 | 0.9981 |
0.73 | 21900 | 0.0025 | 0.0015 | 0.9982 |
0.7333 | 22000 | 0.0021 | 0.0015 | 0.9982 |
0.7367 | 22100 | 0.0017 | 0.0015 | 0.9983 |
0.74 | 22200 | 0.0021 | 0.0015 | 0.9982 |
0.7433 | 22300 | 0.0026 | 0.0015 | 0.9981 |
0.7467 | 22400 | 0.0016 | 0.0015 | 0.9981 |
0.75 | 22500 | 0.0021 | 0.0014 | 0.9981 |
0.7533 | 22600 | 0.002 | 0.0015 | 0.9981 |
0.7567 | 22700 | 0.002 | 0.0014 | 0.9981 |
0.76 | 22800 | 0.0025 | 0.0014 | 0.9982 |
0.7633 | 22900 | 0.0022 | 0.0015 | 0.998 |
0.7667 | 23000 | 0.0022 | 0.0014 | 0.9981 |
0.77 | 23100 | 0.0017 | 0.0014 | 0.9982 |
0.7733 | 23200 | 0.0024 | 0.0014 | 0.9983 |
0.7767 | 23300 | 0.0021 | 0.0014 | 0.9981 |
0.78 | 23400 | 0.0018 | 0.0014 | 0.9982 |
0.7833 | 23500 | 0.0025 | 0.0014 | 0.9981 |
0.7867 | 23600 | 0.0025 | 0.0014 | 0.9981 |
0.79 | 23700 | 0.0015 | 0.0014 | 0.9981 |
0.7933 | 23800 | 0.0023 | 0.0014 | 0.9982 |
0.7967 | 23900 | 0.0028 | 0.0014 | 0.9981 |
0.8 | 24000 | 0.0022 | 0.0014 | 0.9981 |
0.8033 | 24100 | 0.0019 | 0.0014 | 0.9983 |
0.8067 | 24200 | 0.0021 | 0.0014 | 0.9982 |
0.81 | 24300 | 0.002 | 0.0013 | 0.9982 |
0.8133 | 24400 | 0.0015 | 0.0013 | 0.9982 |
0.8167 | 24500 | 0.0021 | 0.0013 | 0.9984 |
0.82 | 24600 | 0.0016 | 0.0013 | 0.9983 |
0.8233 | 24700 | 0.0016 | 0.0013 | 0.9983 |
0.8267 | 24800 | 0.0016 | 0.0014 | 0.9982 |
0.83 | 24900 | 0.0016 | 0.0013 | 0.9983 |
0.8333 | 25000 | 0.0012 | 0.0013 | 0.9982 |
0.8367 | 25100 | 0.0019 | 0.0013 | 0.9983 |
0.84 | 25200 | 0.0014 | 0.0013 | 0.9983 |
0.8433 | 25300 | 0.0024 | 0.0013 | 0.9983 |
0.8467 | 25400 | 0.0014 | 0.0013 | 0.9983 |
0.85 | 25500 | 0.0013 | 0.0013 | 0.9983 |
0.8533 | 25600 | 0.0017 | 0.0014 | 0.9983 |
0.8567 | 25700 | 0.0019 | 0.0014 | 0.9981 |
0.86 | 25800 | 0.003 | 0.0013 | 0.9983 |
0.8633 | 25900 | 0.0012 | 0.0013 | 0.9983 |
0.8667 | 26000 | 0.0023 | 0.0013 | 0.9983 |
0.87 | 26100 | 0.0017 | 0.0013 | 0.9983 |
0.8733 | 26200 | 0.0017 | 0.0013 | 0.9982 |
0.8767 | 26300 | 0.002 | 0.0013 | 0.9983 |
0.88 | 26400 | 0.0017 | 0.0013 | 0.9983 |
0.8833 | 26500 | 0.0017 | 0.0013 | 0.9982 |
0.8867 | 26600 | 0.0017 | 0.0013 | 0.9983 |
0.89 | 26700 | 0.0005 | 0.0013 | 0.9984 |
0.8933 | 26800 | 0.0014 | 0.0013 | 0.9983 |
0.8967 | 26900 | 0.0018 | 0.0013 | 0.9983 |
0.9 | 27000 | 0.0011 | 0.0013 | 0.9983 |
0.9033 | 27100 | 0.0012 | 0.0013 | 0.9983 |
0.9067 | 27200 | 0.0012 | 0.0013 | 0.9983 |
0.91 | 27300 | 0.0015 | 0.0013 | 0.9982 |
0.9133 | 27400 | 0.0015 | 0.0013 | 0.9983 |
0.9167 | 27500 | 0.0016 | 0.0013 | 0.9983 |
0.92 | 27600 | 0.0015 | 0.0012 | 0.9984 |
0.9233 | 27700 | 0.0015 | 0.0013 | 0.9984 |
0.9267 | 27800 | 0.0013 | 0.0012 | 0.9984 |
0.93 | 27900 | 0.0021 | 0.0012 | 0.9984 |
0.9333 | 28000 | 0.0008 | 0.0013 | 0.9984 |
0.9367 | 28100 | 0.002 | 0.0013 | 0.9983 |
0.94 | 28200 | 0.0024 | 0.0012 | 0.9984 |
0.9433 | 28300 | 0.0018 | 0.0012 | 0.9984 |
0.9467 | 28400 | 0.001 | 0.0012 | 0.9984 |
0.95 | 28500 | 0.001 | 0.0012 | 0.9983 |
0.9533 | 28600 | 0.002 | 0.0012 | 0.9984 |
0.9567 | 28700 | 0.0019 | 0.0012 | 0.9984 |
0.96 | 28800 | 0.0012 | 0.0012 | 0.9984 |
0.9633 | 28900 | 0.0017 | 0.0012 | 0.9984 |
0.9667 | 29000 | 0.0018 | 0.0012 | 0.9984 |
0.97 | 29100 | 0.0015 | 0.0012 | 0.9984 |
0.9733 | 29200 | 0.0012 | 0.0012 | 0.9983 |
0.9767 | 29300 | 0.0021 | 0.0012 | 0.9984 |
0.98 | 29400 | 0.0015 | 0.0012 | 0.9983 |
0.9833 | 29500 | 0.0013 | 0.0012 | 0.9983 |
0.9867 | 29600 | 0.0012 | 0.0012 | 0.9983 |
0.99 | 29700 | 0.0017 | 0.0012 | 0.9983 |
0.9933 | 29800 | 0.0016 | 0.0012 | 0.9983 |
0.9967 | 29900 | 0.0011 | 0.0012 | 0.9983 |
1.0 | 30000 | 0.0017 | 0.0012 | 0.9984 |
Framework Versions
- Python: 3.11.1
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.1.1+cu121
- Accelerate: 1.2.0
- Datasets: 2.18.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for yyzheng00/snomed_triplet_800k
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy on snomed triplet 800k 3 4 3 devself-reported0.998
- Cosine Accuracy on snomed triplet 800k 3 4 3 devself-reported0.998