zacbrld's picture
Upload folder using huggingface_hub
1d34894 verified

STEM Embedding Model

🧬 Embedding model optimized for STEM content (Math, Physics, CS, Biology).

Performance

  • Separation Score: 0.6767 (Excellent!)
  • Accuracy: 97.18%
  • Training: 75k+ STEM chunks from Wikipedia + Semantic Scholar

Usage

from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("zacbrld/MNLP_M3_document_encoder_120tok")
tokenizer = AutoTokenizer.from_pretrained("zacbrld/MNLP_M3_document_encoder_120tok")

# Encode text
inputs = tokenizer("Neural networks use backpropagation", return_tensors="pt", truncation=True, padding=True)
embeddings = model(**inputs).last_hidden_state.mean(dim=1)

Training Details

  • Base: sentence-transformers/all-MiniLM-L6-v2
  • Method: Contrastive learning with triplet loss
  • Specialized for scientific and technical content