See axolotl config
axolotl version: 0.7.0
# モデルの設定
base_model: /notebooks/plamo-2-1b-gorilla-chat2 # HuggingFace上のモデル名
model_type: AutoModelForCausalLM # モデルのロードに使用するクラス
tokenizer_type: AutoTokenizer # トークナイザのロードに使用するクラス
trust_remote_code: true # リモートのカスタムコードを信頼してモデルをロード
hub_model_id: zamagi/fft-1
hub_strategy: "end"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_cross_entropy: false
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
# 8bit/4bit設定(8bitモードでメモリ削減)
load_in_8bit: false #f # 8bit量子化されたモデルをロード
load_in_4bit: false # 4bit量子化は使用しない
strict: false # 重みの厳密な一致を要求しない(追加トークン等がある場合に許容)
chat_template: tokenizer_default
# データセットの設定
datasets:
- path: Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
roles_to_train: ["assistant"] # 学習対象とする役割(アシスタントの発話のみ学習)
train_on_eos: last
# - path: Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted
# type: chat_template
# field_messages: conversations
# message_field_role: role
# message_field_content: content
# - path: Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered
# type: chat_template
# field_messages: conversations
# message_field_role: role
# message_field_content: content
# - path: Aratako/Open-Platypus-Japanese-masked-formatted
# type: chat_template
# field_messages: conversations
# message_field_role: role
# message_field_content: content
# - path: kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
# - path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
# split: 20240806filtered
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
# - path: Aratako/magpie-ultra-v0.1-formatted
# type: chat_template
# field_messages: conversations
# message_field_role: role
# message_field_content: content
# - path: Aratako/orca-agentinstruct-1M-v1-selected
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
# - path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
shuffle_merged_datasets: true
dataset_prepared_path: /notebooks/data/fft-data
val_set_size: 0.003
output_dir: /notebooks/data/27b-fft-out-1
dataset_keep_in_memory: false
gpu_memory_limit: 48GiB
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
# トレーニングの設定
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler:
cosine_min_lr_ratio: 0.1
learning_rate: 0.00001
max_steps: 5000
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
#wandb: false
#wandb_project: 27b-fft
#wandb_entity: aratako-lm
#wandb_watch:
#wandb_name: attempt-01
#wandb_log_model:
gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
save_strategy: steps
save_steps: 100
save_total_limit: 2
warmup_steps: 50
eval_steps: 100
eval_batch_size: 1
eval_table_size:
eval_max_new_tokens:
debug:
deepspeed: /notebooks/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
# 出力の保存設定
output_dir: /notebooks/output/plamo-2-1b-gorilla-chat3 # チェックポイントや最終モデルの出力先ディレクトリ
hub_model_id: zamagi/plamo-2-1b-gorilla-chat3 # (オプション) Hugging Face Hubにアップロードする場合のリポジトリ名
plamo-2-1b-gorilla-chat3
This model was trained from scratch on the Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered dataset. It achieves the following results on the evaluation set:
- Loss: 1.1070
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 750
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2715 | 0.0027 | 1 | 1.2753 |
1.2207 | 0.2660 | 100 | 1.1846 |
1.1895 | 0.5319 | 200 | 1.1564 |
1.2285 | 0.7979 | 300 | 1.1334 |
0.9658 | 1.0638 | 400 | 1.1341 |
1.0254 | 1.3298 | 500 | 1.1209 |
0.9521 | 1.5957 | 600 | 1.1129 |
1.0186 | 1.8617 | 700 | 1.1070 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support