Zen Guard Stream v1.0.1

Available Formats

This model is available in multiple formats for different platforms:

SafeTensors (Base Format)

  • Standard HuggingFace format
  • Compatible with Transformers library
  • Use for training and fine-tuning

MLX Format (Apple Silicon Optimized)

  • /mlx/ - Full precision MLX format
  • /mlx-4bit/ - 4-bit quantized (fastest on Mac)

GGUF Format (Coming Soon)

  • Will be added for llama.cpp compatibility
  • CPU-optimized for all platforms

Quick Start

Using Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("zenlm/zen-guard-stream-4b")
tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-guard-stream-4b")

Using MLX (Apple Silicon)

from mlx_lm import load, generate

# Load 4-bit model (fastest)
model, tokenizer = load("zenlm/zen-guard-stream-4b", adapter_path="mlx-4bit")

# Generate
response = generate(model, tokenizer, prompt="Your prompt", max_tokens=256)
print(response)

Using llama.cpp (GGUF - Coming Soon)

llama-cli -m gguf/zen-guard-stream-q4_k_m.gguf -p "Your prompt"

Training with Zoo-Gym

pip install zoo-gym
zoo-gym train --model zenlm/zen-guard-stream-4b --data your_data.jsonl

Model Details

  • Architecture: Based on Qwen 2.5
  • Training: Zoo-Gym with RAIS (Recursive AI Self-Improvement System)
  • License: Apache 2.0
  • Partnership: Hanzo AI x Zoo Labs Foundation

Citation

@misc{zen_zen_guard_stream_2025,
    title={Zen Guard Stream v1.0.1},
    author={Hanzo AI and Zoo Labs Foundation},
    year={2025},
    version={1.0.1}
}
Downloads last month
2
Safetensors
Model size
3.09B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zenlm/zen-guard-stream-4b

Quantizations
1 model