ailexej's picture
Add new SentenceTransformer model
ec7b924 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:36
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-m-v1.5
widget:
  - source_sentence: How can I connect a GCP Image Builder to resources using ZenML?
    sentences:
      - |-
        _run.steps[step_name]
            whylogs_step.visualize()if __name__ == "__main__":
            visualize_statistics("data_loader")
            visualize_statistics("train_data_profiler", "test_data_profiler")

        PreviousEvidentlyNextDevelop a custom data validator

        Last updated 1 month ago
      - |-
        Implement a custom integration

        Creating an external integration and contributing to ZenML

        PreviousContribute to ZenMLNextOverview

        Last updated 4 months ago
      - >-
        --connector <CONNECTOR_ID>


        Example Command Output$ zenml image-builder connect gcp-image-builder
        --connector gcp-generic

        Successfully connected image builder `gcp-image-builder` to the
        following resources:

        ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓

                     CONNECTOR ID              CONNECTOR NAME  CONNECTOR TYPE
         RESOURCE TYPE   RESOURCE NAMES 

        ┠──────────────────────────────────────┼────────────────┼────────────────┼────────────────┼────────────────┨

         bfdb657d-d808-47e7-9974-9ba6e4919d83  gcp-generic     🔵 gcp        
         🔵 gcp-generic  zenml-core     

        ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛


        As a final step, you can use the GCP Image Builder in a ZenML Stack:


        # Register and set a stack with the new image builder

        zenml stack register <STACK_NAME> -i <IMAGE_BUILDER_NAME> ... --set


        When you register the GCP Image Builder, you can generate a GCP Service
        Account Key, save it to a local file and then reference it in the Image
        Builder configuration.


        This method has the advantage that you don't need to install and
        configure the GCP CLI on your host, but it's still not as secure as
        using a GCP Service Connector and the stack component configuration is
        not portable to other hosts.


        For this method, you need to create a user-managed GCP service account,
        and grant it privileges to access the Cloud Build API and to run Cloud
        Builder jobs (e.g. the Cloud Build Editor IAM role.


        With the service account key downloaded to a local file, you can
        register the GCP Image Builder as follows:


        zenml image-builder register <IMAGE_BUILDER_NAME> \
            --flavor=gcp \
            --project=<GCP_PROJECT_ID> \
            --service_account_path=<PATH_TO_SERVICE_ACCOUNT_KEY> \
            --cloud_builder_image=<BUILDER_IMAGE_NAME> \
            --network=<DOCKER_NETWORK> \
            --build_timeout=<BUILD_TIMEOUT_IN_SECONDS>
  - source_sentence: >-
      How do I register and activate a ZenML stack with a new GCP Image Builder
      while ensuring proper authentication?
    sentences:
      - >-
        oad the returned whylogs profile to WhyLabs, e.g.:import pandas as pd

        from whylogs.core import DatasetProfileView

        import whylogs as why

        from zenml import step

        from zenml.integrations.whylogs.flavors.whylogs_data_validator_flavor
        import (
            WhylogsDataValidatorSettings,
        )


        whylogs_settings = WhylogsDataValidatorSettings(
            enable_whylabs=True, dataset_id="<WHYLABS_DATASET_ID>"
        )


        @step(
            settings={
                "data_validator": whylogs_settings
            }
        )

        def data_profiler(
                dataset: pd.DataFrame,
        ) -> DatasetProfileView:
            """Custom data profiler step with whylogs

        Args:
                dataset: a Pandas DataFrame

        Returns:
                Whylogs Profile generated for the dataset
            """

        # validation pre-processing (e.g. dataset preparation) can take place
        here


        results = why.log(dataset)
            profile = results.profile()

        # validation post-processing (e.g. interpret results, take actions) can
        happen here


        return profile.view()


        Visualizing whylogs Profiles


        You can view visualizations of the whylogs profiles generated by your
        pipeline steps directly in the ZenML dashboard by clicking on the
        respective artifact in the pipeline run DAG.


        Alternatively, if you are running inside a Jupyter notebook, you can
        load and render the whylogs profiles using the artifact.visualize()
        method, e.g.:


        from zenml.client import Client


        def visualize_statistics(
            step_name: str, reference_step_name: Optional[str] = None
        ) -> None:
            """Helper function to visualize whylogs statistics from step artifacts.

        Args:
                step_name: step that generated and returned a whylogs profile
                reference_step_name: an optional second step that generated a whylogs
                    profile to use for data drift visualization where two whylogs
                    profiles are required.
            """
            pipe = Client().get_pipeline(pipeline="data_profiling_pipeline")
            whylogs_step = pipe.last_run.steps[step_name]
            whylogs_step.visualize()
      - >-
        ogsDataValidatorSettings,

        )

        from zenml import step@step(
            settings={
                "data_validator": WhylogsDataValidatorSettings(
                    enable_whylabs=True, dataset_id="model-1"
                )
            }
        )

        def data_loader() -> Tuple[
            Annotated[pd.DataFrame, "data"],
            Annotated[DatasetProfileView, "profile"]
        ]:
            """Load the diabetes dataset."""
            X, y = datasets.load_diabetes(return_X_y=True, as_frame=True)

        # merge X and y together
            df = pd.merge(X, y, left_index=True, right_index=True)

        profile = why.log(pandas=df).profile().view()
            return df, profile

        How do you use it?


        Whylogs's profiling functions take in a pandas.DataFrame dataset
        generate a DatasetProfileView object containing all the relevant
        information extracted from the dataset.


        There are three ways you can use whylogs in your ZenML pipelines that
        allow different levels of flexibility:


        instantiate, configure and insert the standard WhylogsProfilerStep
        shipped with ZenML into your pipelines. This is the easiest way and the
        recommended approach, but can only be customized through the supported
        step configuration parameters.


        call the data validation methods provided by the whylogs Data Validator
        in your custom step implementation. This method allows for more
        flexibility concerning what can happen in the pipeline step, but you are
        still limited to the functionality implemented in the Data Validator.


        use the whylogs library directly in your custom step implementation.
        This gives you complete freedom in how you are using whylogs's features.


        You can visualize whylogs profiles in Jupyter notebooks or view them
        directly in the ZenML dashboard.


        The whylogs standard step
      - >2-
         build to finish. More information: Build Timeout.We can register the image builder and use it in our active stack:

        zenml image-builder register <IMAGE_BUILDER_NAME> \
            --flavor=gcp \
            --cloud_builder_image=<BUILDER_IMAGE_NAME> \
            --network=<DOCKER_NETWORK> \
            --build_timeout=<BUILD_TIMEOUT_IN_SECONDS>

        # Register and activate a stack with the new image builder

        zenml stack register <STACK_NAME> -i <IMAGE_BUILDER_NAME> ... --set


        You also need to set up authentication required to access the Cloud
        Build GCP services.


        Authentication Methods


        Integrating and using a GCP Image Builder in your pipelines is not
        possible without employing some form of authentication. If you're
        looking for a quick way to get started locally, you can use the Local
        Authentication method. However, the recommended way to authenticate to
        the GCP cloud platform is through a GCP Service Connector. This is
        particularly useful if you are configuring ZenML stacks that combine the
        GCP Image Builder with other remote stack components also running in
        GCP.


        This method uses the implicit GCP authentication available in the
        environment where the ZenML code is running. On your local machine, this
        is the quickest way to configure a GCP Image Builder. You don't need to
        supply credentials explicitly when you register the GCP Image Builder,
        as it leverages the local credentials and configuration that the Google
        Cloud CLI stores on your local machine. However, you will need to
        install and set up the Google Cloud CLI on your machine as a
        prerequisite, as covered in the Google Cloud documentation , before you
        register the GCP Image Builder.


        Stacks using the GCP Image Builder set up with local authentication are
        not portable across environments. To make ZenML pipelines fully
        portable, it is recommended to use a GCP Service Connector to
        authenticate your GCP Image Builder to the GCP cloud platform.
  - source_sentence: How can I register and set a stack with a new image builder using ZenML?
    sentences:
      - |-
        ZenML - Bridging the gap between ML & Ops

        Legacy Docs

        Bleeding EdgeLegacy Docs0.67.0

        🧙‍♂️Find older version our docs

        Powered by GitBook
      - >-
        > \
            --build_timeout=<BUILD_TIMEOUT_IN_SECONDS># Register and set a stack with the new image builder
        zenml stack register <STACK_NAME> -i <IMAGE_BUILDER_NAME> ... --set


        Caveats


        As described in this Google Cloud Build documentation page, Google Cloud
        Build uses containers to execute the build steps which are automatically
        attached to a network called cloudbuild that provides some Application
        Default Credentials (ADC), that allow the container to be authenticated
        and therefore use other GCP services.


        By default, the GCP Image Builder is executing the build command of the
        ZenML Pipeline Docker image with the option --network=cloudbuild, so the
        ADC provided by the cloudbuild network can also be used in the build.
        This is useful if you want to install a private dependency from a GCP
        Artifact Registry, but you will also need to use a custom base parent
        image with the keyrings.google-artifactregistry-auth installed, so pip
        can connect and authenticate in the private artifact registry to
        download the dependency.


        FROM zenmldocker/zenml:latest


        RUN pip install keyrings.google-artifactregistry-auth


        The above Dockerfile uses zenmldocker/zenml:latest as a base image, but
        is recommended to change the tag to specify the ZenML version and Python
        version like 0.33.0-py3.10.


        PreviousKaniko Image BuilderNextDevelop a Custom Image Builder


        Last updated 21 days ago
      - >-
        res Spark to handle the resource configuration."""def
        _backend_configuration(
                    self,
                    spark_config: SparkConf,
                    step_config: "StepConfiguration",
            ) -> None:
                """Configures Spark to handle backends like YARN, Mesos or Kubernetes."""

        def _io_configuration(
                    self,
                    spark_config: SparkConf
            ) -> None:
                """Configures Spark to handle different input/output sources."""

        def _additional_configuration(
                    self,
                    spark_config: SparkConf
            ) -> None:
                """Appends the user-defined configuration parameters."""

        def _launch_spark_job(
                    self,
                    spark_config: SparkConf,
                    entrypoint_command: List[str]
            ) -> None:
                """Generates and executes a spark-submit command."""

        def launch(
                    self,
                    info: "StepRunInfo",
                    entrypoint_command: List[str],
            ) -> None:
                """Launches the step on Spark."""

        Under the base configuration, you will see the main configuration
        parameters:


        master is the master URL for the cluster where Spark will run. You might
        see different schemes for this URL with varying cluster managers such as
        Mesos, YARN, or Kubernetes.


        deploy_mode can either be 'cluster' (default) or 'client' and it decides
        where the driver node of the application will run.


        submit_args is the JSON string of a dictionary, which will be used to
        define additional parameters if required ( Spark has a wide variety of
        parameters, thus including them all in a single class was deemed
        unnecessary.).


        In addition to this configuration, the launch method of the step
        operator gets additional configuration parameters from the
        DockerSettings and ResourceSettings. As a result, the overall
        configuration happens in 4 base methods:


        _resource_configuration translates the ZenML ResourceSettings object to
        Spark's own resource configuration.


        _backend_configuration is responsible for cluster-manager-specific
        configuration.
  - source_sentence: >-
      How can I install ZenML with support for a local dashboard, and what
      precautions should I take when installing on a Mac with Apple Silicon?
    sentences:
      - >2-
         visit our PyPi package page.

        Running with Dockerzenml is also available as a Docker image hosted
        publicly on DockerHub. Use the following command to get started in a
        bash environment with zenml available:


        docker run -it zenmldocker/zenml /bin/bash


        If you would like to run the ZenML server with Docker:


        docker run -it -d -p 8080:8080 zenmldocker/zenml-server


        Deploying the server


        Though ZenML can run entirely as a pip package on a local system,
        complete with the dashboard. You can do this easily:


        pip install "zenml[server]"

        zenml up  # opens the dashboard locally


        However, advanced ZenML features are dependent on a centrally-deployed
        ZenML server accessible to other MLOps stack components. You can read
        more about it here.


        For the deployment of ZenML, you have the option to either self-host it
        or register for a free ZenML Pro account.


        PreviousIntroductionNextCore concepts


        Last updated 20 days ago
      - |-
        Evaluation and metrics

        Track how your RAG pipeline improves using evaluation and metrics.

        PreviousBasic RAG inference pipelineNextEvaluation in 65 lines of code

        Last updated 4 months ago
      - >-
        🧙Installation


        Installing ZenML and getting started.


        ZenML is a Python package that can be installed directly via pip:


        pip install zenml


        Note that ZenML currently supports Python 3.8, 3.9, 3.10, and 3.11.
        Please make sure that you are using a supported Python version.


        Install with the dashboard


        ZenML comes bundled with a web dashboard that lives inside a sister
        repository. In order to get access to the dashboard locally, you need to
        launch the ZenML Server and Dashboard locally. For this, you need to
        install the optional dependencies for the ZenML Server:


        pip install "zenml[server]"


        We highly encourage you to install ZenML in a virtual environment. At
        ZenML, We like to use virtualenvwrapper or pyenv-virtualenv to manage
        our Python virtual environments.


        Installing onto MacOS with Apple Silicon (M1, M2)


        A change in how forking works on Macs running on Apple Silicon means
        that you should set the following environment variable which will ensure
        that your connections to the server remain unbroken:


        export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES


        You can read more about this here. This environment variable is needed
        if you are working with a local server on your Mac, but if you're just
        using ZenML as a client / CLI and connecting to a deployed server then
        you don't need to set it.


        Nightly builds


        ZenML also publishes nightly builds under the zenml-nightly package
        name. These are built from the latest develop branch (to which work
        ready for release is published) and are not guaranteed to be stable. To
        install the nightly build, run:


        pip install zenml-nightly


        Verifying installations


        Once the installation is completed, you can check whether the
        installation was successful either through Bash:


        zenml version


        or through Python:


        import zenml


        print(zenml.__version__)


        If you would like to learn more about the current release, please visit
        our PyPi package page.


        Running with Docker
  - source_sentence: >-
      How does the KubernetesSparkStepOperator utilize the
      PipelineDockerImageBuilder class to manage Docker images for Spark jobs on
      Kubernetes?
    sentences:
      - |-
        ZenML - Bridging the gap between ML & Ops

        Legacy Docs

        Bleeding EdgeLegacy Docs0.67.0

        🧙‍♂️Find older version our docs

        Powered by GitBook
      - >-
        nsible for cluster-manager-specific configuration._io_configuration is a
        critical method. Even though we have materializers, Spark might require
        additional packages and configuration to work with a specific
        filesystem. This method is used as an interface to provide this
        configuration.


        _additional_configuration takes the submit_args, converts, and appends
        them to the overall configuration.


        Once the configuration is completed, _launch_spark_job comes into play.
        This takes the completed configuration and runs a Spark job on the given
        master URL with the specified deploy_mode. By default, this is achieved
        by creating and executing a spark-submit command.


        Warning


        In its first iteration, the pre-configuration with _io_configuration
        method is only effective when it is paired with an S3ArtifactStore
        (which has an authentication secret). When used with other artifact
        store flavors, you might be required to provide additional configuration
        through the submit_args.


        Stack Component: KubernetesSparkStepOperator


        The KubernetesSparkStepOperator is implemented by subclassing the base
        SparkStepOperator and uses the PipelineDockerImageBuilder class to build
        and push the required Docker images.


        from typing import Optional


        from zenml.integrations.spark.step_operators.spark_step_operator import
        (
            SparkStepOperatorConfig
        )


        class KubernetesSparkStepOperatorConfig(SparkStepOperatorConfig):
            """Config for the Kubernetes Spark step operator."""

        namespace: Optional[str] = None
            service_account: Optional[str] = None

        from pyspark.conf import SparkConf


        from zenml.utils.pipeline_docker_image_builder import
        PipelineDockerImageBuilder

        from zenml.integrations.spark.step_operators.spark_step_operator import
        (
            SparkStepOperator
        )


        class KubernetesSparkStepOperator(SparkStepOperator):
            """Step operator which runs Steps with Spark on Kubernetes."""
      - "ngs/python/Dockerfile -u 0 build\n\nConfiguring RBACAdditionally, you may need to create the several resources in Kubernetes in order to give Spark access to edit/manage your driver executor pods.\n\nTo do so, create a file called rbac.yaml with the following content:\n\napiVersion: v1\nkind: Namespace\nmetadata:\n  name: spark-namespace\n---\napiVersion: v1\nkind: ServiceAccount\nmetadata:\n  name: spark-service-account\n  namespace: spark-namespace\n---\napiVersion: rbac.authorization.k8s.io/v1\nkind: ClusterRoleBinding\nmetadata:\n  name: spark-role\n  namespace: spark-namespace\nsubjects:\n  - kind: ServiceAccount\n    name: spark-service-account\n    namespace: spark-namespace\nroleRef:\n  kind: ClusterRole\n  name: edit\n  apiGroup: rbac.authorization.k8s.io\n---\n\nAnd then execute the following command to create the resources:\n\naws eks --region=$REGION update-kubeconfig --name=$EKS_CLUSTER_NAME\n\nkubectl create -f rbac.yaml\n\nLastly, note down the namespace and the name of the service account since you will need them when registering the stack component in the next step.\n\nHow to use it\n\nTo use the KubernetesSparkStepOperator, you need:\n\nthe ZenML spark integration. If you haven't installed it already, run\n\nzenml integration install spark\n\nDocker installed and running.\n\nA remote artifact store as part of your stack.\n\nA remote container registry as part of your stack.\n\nA Kubernetes cluster deployed.\n\nWe can then register the step operator and use it in our active stack:\n\nzenml step-operator register spark_step_operator \\\n\t--flavor=spark-kubernetes \\\n\t--master=k8s://$EKS_API_SERVER_ENDPOINT \\\n\t--namespace=<SPARK_KUBERNETES_NAMESPACE> \\\n\t--service_account=<SPARK_KUBERNETES_SERVICE_ACCOUNT>\n\n# Register the stack\nzenml stack register spark_stack \\\n    -o default \\\n    -s spark_step_operator \\\n    -a spark_artifact_store \\\n    -c spark_container_registry \\\n    -i local_builder \\\n    --set"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: zenml/finetuned-snowflake-arctic-embed-m-v1.5
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 384
          type: dim_384
        metrics:
          - type: cosine_accuracy@1
            value: 0.75
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 1
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.75
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.75
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 1
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.875
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8333333333333334
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8333333333333334
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.75
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.75
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.75
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.75
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.75
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8576691395183482
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8125
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8125
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.75
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.75
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.75
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.75
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.75
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8576691395183482
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8125
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8125
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.75
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 1
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.75
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.75
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 1
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.875
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8333333333333334
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8333333333333334
            name: Cosine Map@100

zenml/finetuned-snowflake-arctic-embed-m-v1.5

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m-v1.5")
# Run inference
sentences = [
    'How does the KubernetesSparkStepOperator utilize the PipelineDockerImageBuilder class to manage Docker images for Spark jobs on Kubernetes?',
    'nsible for cluster-manager-specific configuration._io_configuration is a critical method. Even though we have materializers, Spark might require additional packages and configuration to work with a specific filesystem. This method is used as an interface to provide this configuration.\n\n_additional_configuration takes the submit_args, converts, and appends them to the overall configuration.\n\nOnce the configuration is completed, _launch_spark_job comes into play. This takes the completed configuration and runs a Spark job on the given master URL with the specified deploy_mode. By default, this is achieved by creating and executing a spark-submit command.\n\nWarning\n\nIn its first iteration, the pre-configuration with _io_configuration method is only effective when it is paired with an S3ArtifactStore (which has an authentication secret). When used with other artifact store flavors, you might be required to provide additional configuration through the submit_args.\n\nStack Component: KubernetesSparkStepOperator\n\nThe KubernetesSparkStepOperator is implemented by subclassing the base SparkStepOperator and uses the PipelineDockerImageBuilder class to build and push the required Docker images.\n\nfrom typing import Optional\n\nfrom zenml.integrations.spark.step_operators.spark_step_operator import (\n    SparkStepOperatorConfig\n)\n\nclass KubernetesSparkStepOperatorConfig(SparkStepOperatorConfig):\n    """Config for the Kubernetes Spark step operator."""\n\nnamespace: Optional[str] = None\n    service_account: Optional[str] = None\n\nfrom pyspark.conf import SparkConf\n\nfrom zenml.utils.pipeline_docker_image_builder import PipelineDockerImageBuilder\nfrom zenml.integrations.spark.step_operators.spark_step_operator import (\n    SparkStepOperator\n)\n\nclass KubernetesSparkStepOperator(SparkStepOperator):\n    """Step operator which runs Steps with Spark on Kubernetes."""',
    "ngs/python/Dockerfile -u 0 build\n\nConfiguring RBACAdditionally, you may need to create the several resources in Kubernetes in order to give Spark access to edit/manage your driver executor pods.\n\nTo do so, create a file called rbac.yaml with the following content:\n\napiVersion: v1\nkind: Namespace\nmetadata:\n  name: spark-namespace\n---\napiVersion: v1\nkind: ServiceAccount\nmetadata:\n  name: spark-service-account\n  namespace: spark-namespace\n---\napiVersion: rbac.authorization.k8s.io/v1\nkind: ClusterRoleBinding\nmetadata:\n  name: spark-role\n  namespace: spark-namespace\nsubjects:\n  - kind: ServiceAccount\n    name: spark-service-account\n    namespace: spark-namespace\nroleRef:\n  kind: ClusterRole\n  name: edit\n  apiGroup: rbac.authorization.k8s.io\n---\n\nAnd then execute the following command to create the resources:\n\naws eks --region=$REGION update-kubeconfig --name=$EKS_CLUSTER_NAME\n\nkubectl create -f rbac.yaml\n\nLastly, note down the namespace and the name of the service account since you will need them when registering the stack component in the next step.\n\nHow to use it\n\nTo use the KubernetesSparkStepOperator, you need:\n\nthe ZenML spark integration. If you haven't installed it already, run\n\nzenml integration install spark\n\nDocker installed and running.\n\nA remote artifact store as part of your stack.\n\nA remote container registry as part of your stack.\n\nA Kubernetes cluster deployed.\n\nWe can then register the step operator and use it in our active stack:\n\nzenml step-operator register spark_step_operator \\\n\t--flavor=spark-kubernetes \\\n\t--master=k8s://$EKS_API_SERVER_ENDPOINT \\\n\t--namespace=<SPARK_KUBERNETES_NAMESPACE> \\\n\t--service_account=<SPARK_KUBERNETES_SERVICE_ACCOUNT>\n\n# Register the stack\nzenml stack register spark_stack \\\n    -o default \\\n    -s spark_step_operator \\\n    -a spark_artifact_store \\\n    -c spark_container_registry \\\n    -i local_builder \\\n    --set",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_384 dim_256 dim_128 dim_64
cosine_accuracy@1 0.75 0.75 0.75 0.75
cosine_accuracy@3 1.0 0.75 0.75 1.0
cosine_accuracy@5 1.0 1.0 1.0 1.0
cosine_accuracy@10 1.0 1.0 1.0 1.0
cosine_precision@1 0.75 0.75 0.75 0.75
cosine_precision@3 0.3333 0.25 0.25 0.3333
cosine_precision@5 0.2 0.2 0.2 0.2
cosine_precision@10 0.1 0.1 0.1 0.1
cosine_recall@1 0.75 0.75 0.75 0.75
cosine_recall@3 1.0 0.75 0.75 1.0
cosine_recall@5 1.0 1.0 1.0 1.0
cosine_recall@10 1.0 1.0 1.0 1.0
cosine_ndcg@10 0.875 0.8577 0.8577 0.875
cosine_mrr@10 0.8333 0.8125 0.8125 0.8333
cosine_map@100 0.8333 0.8125 0.8125 0.8333

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 36 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 36 samples:
    positive anchor
    type string string
    details
    • min: 13 tokens
    • mean: 23.11 tokens
    • max: 38 tokens
    • min: 31 tokens
    • mean: 299.64 tokens
    • max: 512 tokens
  • Samples:
    positive anchor
    How does the ZenML BaseService registry manage serialization and re-creation of configurations for BaseService instances as part of the remote model server setup? e details of the deployment process from the user.It needs to act as a ZenML BaseService registry, where every BaseService instance is used as an internal representation of a remote model server (see the find_model_server abstract method). To achieve this, it must be able to re-create the configuration of a BaseService from information that is persisted externally, alongside, or even as part of the remote model server configuration itself. For example, for model servers that are implemented as Kubernetes resources, the BaseService instances can be serialized and saved as Kubernetes resource annotations. This allows the model deployer to keep track of all externally running model servers and to re-create their corresponding BaseService instance representations at any given time. The model deployer also defines methods that implement basic life-cycle management on remote model servers outside the coverage of a pipeline (see stop_model_server , start_model_server and delete_model_server)....
    How do you ensure the MyExperimentTrackerFlavor is properly registered and available in ZenML? gister flavors.my_flavor.MyExperimentTrackerFlavorZenML resolves the flavor class by taking the path where you initialized zenml (via zenml init) as the starting point of resolution. Therefore, please ensure you follow the best practice of initializing zenml at the root of your repository.

    If ZenML does not find an initialized ZenML repository in any parent directory, it will default to the current working directory, but usually, it's better to not have to rely on this mechanism and initialize zenml at the root.

    Afterward, you should see the new flavor in the list of available flavors:

    zenml experiment-tracker flavor list

    It is important to draw attention to when and how these base abstractions are coming into play in a ZenML workflow.

    The CustomExperimentTrackerFlavor class is imported and utilized upon the creation of the custom flavor through the CLI.

    The CustomExperimentTrackerConfig class is imported when someone tries to register/update a stack component with this custom fl...
    How do you load and profile a dataset using the Whylogs data validator in ZenML? ogsDataValidatorSettings,
    )
    from zenml import step@step(
    settings={
    "data_validator": WhylogsDataValidatorSettings(
    enable_whylabs=True, dataset_id="model-1"
    )
    }
    )
    def data_loader() -> Tuple[
    Annotated[pd.DataFrame, "data"],
    Annotated[DatasetProfileView, "profile"]
    ]:
    """Load the diabetes dataset."""
    X, y = datasets.load_diabetes(return_X_y=True, as_frame=True)

    # merge X and y together
    df = pd.merge(X, y, left_index=True, right_index=True)

    profile = why.log(pandas=df).profile().view()
    return df, profile

    How do you use it?

    Whylogs's profiling functions take in a pandas.DataFrame dataset generate a DatasetProfileView object containing all the relevant information extracted from the dataset.

    There are three ways you can use whylogs in your ZenML pipelines that allow different levels of flexibility:

    instantiate, configure and insert the standard WhylogsProfilerStep shipped with ZenML into your pipelines. This is the easiest ...
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_384_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
1.0 1 0.875 0.875 0.8577 0.875
2.0 3 0.875 0.8577 0.8577 0.875
3.0 4 0.875 0.8577 0.8577 0.875
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.43.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.0
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}