Update README.md
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ This model is fine tuned with roberta-base model on 3200000 comments from stockt
|
|
20 |
- batch size 32
|
21 |
- learning rate 2e-5
|
22 |
|
23 |
-
|
|
24 |
| ----------- | ----------- | ---------------- | ------------------- |
|
25 |
| epoch1 | 0.3495 | 0.2956 | 0.8679 |
|
26 |
| epoch2 | 0.2717 | 0.2235 | 0.9021 |
|
@@ -58,7 +58,9 @@ model_loaded = RobertaForSequenceClassification.from_pretrained('zhayunduo/rober
|
|
58 |
|
59 |
nlp = pipeline("text-classification", model=model_loaded, tokenizer=tokenizer_loaded)
|
60 |
|
61 |
-
sentences = pd.Series(['just buy','just sell it',
|
|
|
|
|
62 |
# sentences = list(sentences.apply(process_text)) # if input text contains https, @ or # or $ symbols, better apply preprocess to get a more accurate result
|
63 |
sentences = list(sentences)
|
64 |
results = nlp(sentences)
|
|
|
20 |
- batch size 32
|
21 |
- learning rate 2e-5
|
22 |
|
23 |
+
| | Train loss | Validation loss | Validation accuracy |
|
24 |
| ----------- | ----------- | ---------------- | ------------------- |
|
25 |
| epoch1 | 0.3495 | 0.2956 | 0.8679 |
|
26 |
| epoch2 | 0.2717 | 0.2235 | 0.9021 |
|
|
|
58 |
|
59 |
nlp = pipeline("text-classification", model=model_loaded, tokenizer=tokenizer_loaded)
|
60 |
|
61 |
+
sentences = pd.Series(['just buy','just sell it',
|
62 |
+
'entity rocket to the sky!',
|
63 |
+
'go down','even though it is going up, I still think it will not keep this trend in the near future'])
|
64 |
# sentences = list(sentences.apply(process_text)) # if input text contains https, @ or # or $ symbols, better apply preprocess to get a more accurate result
|
65 |
sentences = list(sentences)
|
66 |
results = nlp(sentences)
|