zhiqing0205
Add complete U2Net project with HuggingFace preparation
ece7754
# πŸš€ Quick Start Guide
## One-Command Setup
### Method 1: Using our setup script
```bash
# Download the setup script
curl -O https://huggingface.co/zhiqing0205/u2net-mvtec-loco-segmentation/raw/main/setup_project.py
# Run setup (downloads everything automatically)
python setup_project.py
# Use the project
cd u2net-mvtec-loco
python mvtec_loco_fg_segmentation.py
```
### Method 2: Using HuggingFace CLI
```bash
# Install HuggingFace CLI
pip install huggingface_hub
# Download complete project (equivalent to git clone)
huggingface-cli download zhiqing0205/u2net-mvtec-loco-segmentation \
--local-dir ./u2net-project --repo-type model
# Use the project
cd u2net-project
python mvtec_loco_fg_segmentation.py
```
### Method 3: Using Python
```bash
# One-liner to download everything
python -c "
from huggingface_hub import snapshot_download
snapshot_download('zhiqing0205/u2net-mvtec-loco-segmentation', local_dir='./u2net-project')
print('Done! cd u2net-project && python mvtec_loco_fg_segmentation.py')
"
```
## What Gets Downloaded
βœ… Complete source code
βœ… Pre-trained model weights (u2net.pth - 169MB)
βœ… Documentation (English + Chinese)
βœ… Example scripts and utilities
βœ… Ready to run immediately
## File Structure After Download
```
u2net-mvtec-loco/
β”œβ”€β”€ mvtec_loco_fg_segmentation.py # Main script
β”œβ”€β”€ saved_models/
β”‚ └── u2net/
β”‚ └── u2net.pth # Pre-trained model (169MB)
β”œβ”€β”€ model/ # Model architecture
β”œβ”€β”€ data_loader.py # Data utilities
β”œβ”€β”€ README.md # English docs
β”œβ”€β”€ README_CN.md # Chinese docs
└── ...
```
## Immediate Usage
```bash
# Process entire MVTec LOCO dataset
python mvtec_loco_fg_segmentation.py
# Process specific categories
python mvtec_loco_fg_segmentation.py --categories breakfast_box
# Custom threshold
python mvtec_loco_fg_segmentation.py --threshold 0.3
```
That's it! πŸŽ‰