|
# π Quick Start Guide |
|
|
|
## One-Command Setup |
|
|
|
### Method 1: Using our setup script |
|
```bash |
|
# Download the setup script |
|
curl -O https://huggingface.co/zhiqing0205/u2net-mvtec-loco-segmentation/raw/main/setup_project.py |
|
|
|
# Run setup (downloads everything automatically) |
|
python setup_project.py |
|
|
|
# Use the project |
|
cd u2net-mvtec-loco |
|
python mvtec_loco_fg_segmentation.py |
|
``` |
|
|
|
### Method 2: Using HuggingFace CLI |
|
```bash |
|
# Install HuggingFace CLI |
|
pip install huggingface_hub |
|
|
|
# Download complete project (equivalent to git clone) |
|
huggingface-cli download zhiqing0205/u2net-mvtec-loco-segmentation \ |
|
--local-dir ./u2net-project --repo-type model |
|
|
|
# Use the project |
|
cd u2net-project |
|
python mvtec_loco_fg_segmentation.py |
|
``` |
|
|
|
### Method 3: Using Python |
|
```bash |
|
# One-liner to download everything |
|
python -c " |
|
from huggingface_hub import snapshot_download |
|
snapshot_download('zhiqing0205/u2net-mvtec-loco-segmentation', local_dir='./u2net-project') |
|
print('Done! cd u2net-project && python mvtec_loco_fg_segmentation.py') |
|
" |
|
``` |
|
|
|
## What Gets Downloaded |
|
|
|
β
Complete source code |
|
β
Pre-trained model weights (u2net.pth - 169MB) |
|
β
Documentation (English + Chinese) |
|
β
Example scripts and utilities |
|
β
Ready to run immediately |
|
|
|
## File Structure After Download |
|
``` |
|
u2net-mvtec-loco/ |
|
βββ mvtec_loco_fg_segmentation.py # Main script |
|
βββ saved_models/ |
|
β βββ u2net/ |
|
β βββ u2net.pth # Pre-trained model (169MB) |
|
βββ model/ # Model architecture |
|
βββ data_loader.py # Data utilities |
|
βββ README.md # English docs |
|
βββ README_CN.md # Chinese docs |
|
βββ ... |
|
``` |
|
|
|
## Immediate Usage |
|
```bash |
|
# Process entire MVTec LOCO dataset |
|
python mvtec_loco_fg_segmentation.py |
|
|
|
# Process specific categories |
|
python mvtec_loco_fg_segmentation.py --categories breakfast_box |
|
|
|
# Custom threshold |
|
python mvtec_loco_fg_segmentation.py --threshold 0.3 |
|
``` |
|
|
|
That's it! π |