Whisper Base Basque

This model is a fine-tuned version of openai/whisper-base on the common_voice_21_0_eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5268
  • Wer: 12.7885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 128
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.005 22.2222 5000 0.3503 16.5149
0.0022 44.4444 10000 0.3754 15.6124
0.0015 66.6667 15000 0.3950 15.3358
0.0018 88.8889 20000 0.4129 15.5708
0.0015 111.1111 25000 0.4234 15.1078
0.0004 133.3333 30000 0.4302 14.7167
0.0012 155.5556 35000 0.4466 15.0627
0.0006 177.7778 40000 0.4500 15.2569
0.0 200.0 45000 0.4556 13.8705
0.0 222.2222 50000 0.4783 13.3815
0.0 244.4444 55000 0.5086 13.0174
0.0 266.6667 60000 0.5255 12.9151
0.0 288.8889 65000 0.5255 12.8024
0.0 311.1111 70000 0.5268 12.7885
0.0 333.3333 75000 0.5301 12.8058
0.0 355.5556 80000 0.5325 12.8483
0.0 377.7778 85000 0.5351 12.8856
0.0 400.0 90000 0.5368 12.9472
0.0 422.2222 95000 0.5378 12.9662

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
55
Safetensors
Model size
72.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zuazo/whisper-base-eu-cv21.0

Finetuned
(508)
this model

Evaluation results