Whisper Large-V3-Turbo Basque

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the common_voice_21_0_eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3890
  • Wer: 7.9445

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0191 11.1112 5000 0.2372 10.4892
0.0104 22.2225 10000 0.2676 10.2733
0.0048 33.3337 15000 0.2892 10.2039
0.0061 44.4449 20000 0.2959 10.0548
0.0052 55.5562 25000 0.3025 9.8909
0.0037 66.6674 30000 0.3136 10.5681
0.0026 77.7786 35000 0.3198 9.9664
0.0029 88.8899 40000 0.3295 10.6158
0.0014 100.0 45000 0.3219 9.8233
0.0007 111.1112 50000 0.3314 9.4045
0.0013 122.2225 55000 0.3390 9.9508
0.0004 133.3337 60000 0.3317 9.5042
0.0009 144.4449 65000 0.3369 9.2051
0.0003 155.5562 70000 0.3441 9.4540
0.0001 166.6674 75000 0.3372 8.9450
0.0 177.7786 80000 0.3462 8.9242
0.0 188.8899 85000 0.3559 8.7829
0.0 200.0 90000 0.3691 8.3572
0.0 211.1112 95000 0.3827 8.0503
0.0 222.2225 100000 0.3890 7.9445

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
55
Safetensors
Model size
809M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zuazo/whisper-large-v3-turbo-eu-cv21.0

Finetuned
(285)
this model

Evaluation results