Whisper Medium Basque

This model is a fine-tuned version of openai/whisper-medium on the common_voice_21_0_eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3958
  • Wer: 8.3789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0102 11.1111 5000 0.2346 10.0851
0.0045 22.2222 10000 0.2662 10.2880
0.0035 33.3333 15000 0.2865 10.0383
0.0046 44.4444 20000 0.2913 9.9889
0.0018 55.5556 25000 0.3080 9.8797
0.0016 66.6667 30000 0.3096 9.8380
0.0031 77.7778 35000 0.3158 9.9612
0.0018 88.8889 40000 0.3317 10.2646
0.001 100.0 45000 0.3321 10.1380
0.0003 111.1111 50000 0.3275 9.7904
0.0007 122.2222 55000 0.3265 10.0401
0.0 133.3333 60000 0.3307 9.5641
0.0 144.4444 65000 0.3337 9.7461
0.0 155.5556 70000 0.3444 9.6820
0.0002 166.6667 75000 0.3503 9.8346
0.0 177.7778 80000 0.3586 9.1531
0.0 188.8889 85000 0.3744 8.7881
0.0 200.0 90000 0.3871 8.5323
0.0 211.1111 95000 0.3938 8.4040
0.0 222.2222 100000 0.3958 8.3789

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
63
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zuazo/whisper-medium-eu-cv21.0

Finetuned
(668)
this model

Evaluation results