bert-azahead-v1.0

This model is a fine-tuned version of bert-base-uncased on the azaheadhealth dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7204
  • Accuracy: 0.7083
  • F1: 0.4615
  • Precision: 0.5
  • Recall: 0.4286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5889 1.0 10 0.5438 0.625 0.0 0.0 0.0
0.4926 2.0 20 0.4309 0.75 0.5714 0.5714 0.5714
0.3613 3.0 30 0.4260 0.75 0.5714 0.5714 0.5714
0.2628 4.0 40 0.4989 0.75 0.5714 0.5714 0.5714
0.1658 5.0 50 0.5883 0.7083 0.4615 0.5 0.4286
0.1153 6.0 60 0.6374 0.6667 0.3333 0.4 0.2857
0.074 7.0 70 0.6709 0.6667 0.3333 0.4 0.2857
0.0548 8.0 80 0.6848 0.7083 0.4615 0.5 0.4286
0.0456 9.0 90 0.7322 0.7083 0.4615 0.5 0.4286
0.0439 10.0 100 0.7204 0.7083 0.4615 0.5 0.4286

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.13.2
Downloads last month
21
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zwellington/bert-azahead-v1.0

Finetuned
(3883)
this model

Evaluation results