|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: NLP_90_1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NLP_90_1 |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3325 |
|
- Accuracy: 0.9174 |
|
- Precision: 0.9126 |
|
- Recall: 0.9140 |
|
- F1: 0.9128 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.3664 | 1.0 | 48 | 0.3609 | 0.8991 | 0.8935 | 0.8988 | 0.8938 | |
|
| 0.2282 | 2.0 | 96 | 0.3376 | 0.8991 | 0.8920 | 0.8978 | 0.8927 | |
|
| 0.1638 | 3.0 | 144 | 0.3184 | 0.9128 | 0.9070 | 0.9079 | 0.9070 | |
|
| 0.1595 | 4.0 | 192 | 0.3291 | 0.9174 | 0.9147 | 0.9131 | 0.9135 | |
|
| 0.1388 | 5.0 | 240 | 0.3495 | 0.8945 | 0.8844 | 0.8918 | 0.8865 | |
|
| 0.1075 | 6.0 | 288 | 0.3357 | 0.9174 | 0.9151 | 0.9141 | 0.9139 | |
|
| 0.1073 | 7.0 | 336 | 0.3311 | 0.9174 | 0.9126 | 0.9140 | 0.9128 | |
|
| 0.1507 | 8.0 | 384 | 0.3325 | 0.9174 | 0.9126 | 0.9140 | 0.9128 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|